簡易檢索 / 詳目顯示

研究生: 陳冠志
Chen, Kuan-chih
論文名稱: 掃描式表面電位顯微術應用於SPM探針電容模型之理論建立及實驗驗證
Application of Scanning Surface Potential Microscopy to the Theoretical Study and Experimental Verification on Capacitance Model
指導教授: 林仁輝
Lin, Jen-fin
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 116
中文關鍵詞: 電容模型圓錐角錐掃描探針顯微術掃描式表面電位顯微術凱文力顯微術靜電力面電荷密度
外文關鍵詞: Capacitance Model, Cone, Electrostatic forces, KFM, SSPM, SPM, Pyramid, Surface charge density
相關次數: 點閱:88下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探針與樣品之間的電容效應,對於EFM與SSPM的量測及研究上有著不可忽視的影響,本論文對SPM使用之金屬鍍膜探針與金屬樣品之間的電容進行探討。將探針電容視為探針尖端(apex)球面(sphere)電容與側面(lateral surface)電容兩部分。在本研究中認為探針上的感應電荷將集中在探針的金屬表面,由面電荷密度的概念推導出圓錐與角錐兩種不同形貌的探針電容模型。利用面電荷密度的關係式來說明探針球面與側面上的電荷集中情形,並討論圓錐與角錐側面上電荷分佈的不同。並將特徵角(半錐角)與特徵半徑對電容模型與電容靜電力之間的影響加以討論完整的介紹。由本研究模型所得之靜電力在距離約小於10nm內,由球面電容主導;當約大於10nm後,靜電力漸漸由側面電容主導,此與Belaidi等人的研究結論相同。
    本文的電容模型與最常用的導體球模型進比較與討論,在距離極小的情形,靜電力幾乎相同,但電容差異甚大。與Hudlet等人的靜電力模型相比,可說明本電容模型轉換為靜電力後的可行性與合理性。最後試著利用SSPM的基本理論來探討表面電位資訊與電容之間的關係。

    This research studies the capacitor between tip coated metallic films and metallic sample. We consider that the tip capacitance can composed of apex sphere and lateral surface capacitance. The charge inducing on the tip is considered as concentrated on the metal surface of the tip, so the concept of surface charge density is applied establish the capacitor model of cone and pyramid. The equation of surface charge density was proposed to explain the charge distribution on apex and lateral surface of tip, the difference of charge distribution on lateral surface of cone and pyramid was discussed. Therefore, the influence of radius and half cone angle for capacitor models and the electrostatic force. According to the present models the electrostatic force is dominated by the apex capacitor as the distance small than 10nm, whereas forces determined by lateral surface capacitor when the distance large than 100nm. This behavior is quite the same as that reported in the study of Belidi et al.

    摘要......................................................I Abstract.................................................II 誌謝....................................................III 目錄.....................................................IV 表目錄...................................................VI 圖目錄..................................................VII 符號表....................................................X 第一章 緒論..............................................1 1-1 前言.................................................1 1-2 文獻回顧.............................................2 1-2-1探針結構.............................................2 1-2-2電容模型回顧.........................................2 1-2-3掃描式表面電位顯微術(SSPM)的發展...................5 1-3 研究目的及研究內容...................................6 第二章 掃描探針顯微鏡的原理及SPM探針電容模型理論........14 2-1 掃描探針顯微術的原理................................14 2-1-1概述................................................14 2-1-2原子力顯微術的操作模式與原理........................15 2-1-3表面電位顯微術......................................17 2-2 電容電荷基本理論介紹與面電荷密度....................21 2-2-1基本理論介紹........................................21 2-2-2面電荷密度..........................................22 2-3 球面電容模型理論....................................25 2-4 圓錐電容模型理論....................................27 2-5 角錐電容模型理論....................................32 2-5-1角錐電容模型基本架構................................32 2-5-2角錐模型面電荷密度..................................33 2-5-3角錐模型之面電荷量與電容............................36 2-5-4非理想角錐電容模型..................................40 2-6 圓錐模型與角錐模型之比較............................43 2-7 實驗上凱文力顯微術的理論............................44 第三章 實驗規劃.........................................60 3-1 實驗目的............................................60 3-2 實驗儀器............................................60 3-2-1掃描表面電位顯微鏡..................................60 3-2-2探針規格............................................61 3-3 實驗內容與分析......................................62 3-3-1實驗內容與步驟......................................62 3-3-2實驗內容分析........................................63 第四章 結果與討論.......................................68 4-1 面電荷密度模擬與討論................................68 4-1-1面電荷密度在側面與球面上的討論......................68 4-1-2角錐面電荷的額外討論................................71 4-2 電容模型理論模擬與討論..............................74 4-2-1理想圓錐與角錐電容的比較與討論......................74 4-2-2特徵角對電容模型的影響與討論........................77 4-2-3特徵半徑對電容模型的影響與討論......................81 4-2-4考慮不同特徵角與特徵半徑的電容模型比較討論..........83 4-3 與實心導體球電容模型的比較與討論....................85 4-4 與Hudlet等人的靜電力模型理論比較與討論..............87 4-4-1 球面電容部分的討...................................87 4-4-2 靜電作用力的討論...................................88 4-5 SSPM的理論分析討論..................................91 4-5-1 實驗數據曲線似合與真實接觸電位值...................91 4-5-2 理論與實驗的電容與電容梯度比.......................91 第五章 結論與未來研究方向..............................111 5-1 結論...............................................111 5-2 建議與未來研究方向.................................112 參考文獻................................................113 自述....................................................116

    1 G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscope”, Phys. Rev. Lett. 49, 57(1983).
    2 L. Boyer, F. Houze, A. Tonck, J-L. Loubet and J-M. Georges, “The influence of surface roughness on the capacitance between a sphere and a plane”, J. Phys. D. 27, 1504(1994).
    3 R. Mäckel, H. Baumgärtner, and J. Ren, “The scanning Kelvin microscopy”, Rev. Sci. Instrum. 64 (3), 694(1993).
    4 S. Hudlet, M. Saint Jeana, C. Guthmann, and J. Berger, “Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface”, Eur. Phys. J. B 2, 5(1998).
    5 M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy”, Appl. Phys. Lett. 58 (25), 24(1991)
    6 H. O. Jacobs, H. F. Knapp, S. Müller, and A. Stemmer, “Surface potential mapping: A qualitative material contrast in SPM”, Ultramicroscopy 69, 39(1997).
    7 R. Dianoux, F. Martins, F. Marchi, C. Alandi, F. Comin, and J. Chevrier, “Detection of electrostatic forces with an atomic force microscope: Analytical and experimental dynamic force curves in the nonlinear regime”, Phys. Rev. B 68,045403(2003)
    8 Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser, “Kelvin probe force microscopy of semiconductor surface defects”, Phys. Rev. B 70, 085320(2004).
    9 B. J. Rodriguez, W.-C. Yang, R. J. Nemanich, and A. Gruverman, “Scanning probe investigation of surface charge and surface potential of GaN-based heterostructures”, Appl. Phys. Lett. 86, 112115(2005).
    10 G. Kolry, and M. G. Spenser, “Surface potential measurement on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy”, J. Appl. Phys. 90 (1), 337(2001).
    11 G. Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett. 56, 930(1986).
    12 R. Shikler, T. Meoded, N. Fried, B. Mishori, and Y. Rosenwaks, “Two-dimensional surface band structure of operating light emitting devices”, J. Appl. Phys. 86, 107 (1999).
    13 S. Hudlet, M. S. Jean, B. Roulet, J. Berger, and C. Guthmann, “Electrostatic forces between a metallic tip and semiconductor surfaces”, J. Phys. I. France 4, 1725(1994).
    14 A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffman, P. Kaszuba, and C. Daghlian, “Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy”, J. Appl. Phys. 77 (5), 1888 (1995).
    15 G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon and Y. Kuk, “Electrical Characterization of an Operating Si pn-Junction Diode with Scanning Capacitance Microscopy and Kelvin Probe Microscopy”, J. Appl. Phys. 90 (1), 443(2001)
    16 J. Colchero, A. Gil, and A. M. Baró, “Resolution enhancement and improved data interpretation in electrostatic force microscopy”, Phys. Rev. B. 64, 245403(2001).
    17 M. S. Jean, S. Hudlet, B. Roulet, C. Guthmann, and J. Berger, “Van der Waals and capacitive forces in atomic force microscopies”, J. Appl. Phys. 86, 5245(1999).
    18 S. Belaidi, P. Girard and G. Leveque, “Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions”, J. Appl. Phys. 81, 3(1997).
    19 B. M. Law and F. Rieutord, “Electrostatic forces in atomic force microscopy”, Phys. Rev. B. 66, 0.5402(2002).
    20 O. Cherniavskaya, L. Chen, V. Weng, L. Yuditsky and L. E. Brus, “ Quantitative Noncontact Electrostatic Force Imaging of Nanocrystal Polarizability”, J. Phys. Chem. B, 107,1525-1531(2003).
    21 L. Fumagalli, G. Ferreri, M. Sampietro, I. Casuso, E. Martínez, J. Samitier and G. Gomila, “Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy”, Nanotechnology. 17, 4581-4587(2006).
    22 Dawn Bonnell (Editor), Scanning Probe Microscopy and Spectroscopy, 2nd ed., John Wiley & Sons, Inc., 2001.
    23 D. Sarid, Scanning Force Microscopy With Applications to Electric, Magnetic and Atomic Forces, Revised ed, Oxford University Press, New York, 1994.
    24 J. W. Gardner, V. k. Varadan and O. O. Awadelkarim, Microsensors MEMS and Smart Devices, John Wiley & Sons, Inc.
    25 Bharat Bhushan (Series Editor), Handbook of Micro/Nano Tribology, CRC press, 1995.
    26 D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley Press, Inc., 1992.
    27 Nanosenesors Inc., product catalog, PointProbePlus(PPP) Series(http://www.nanosensors.com/)
    28 Nanoworld Inc., (http://www.nanoworld.com/)

    下載圖示 校內:2008-08-06公開
    校外:2008-08-06公開
    QR CODE