| 研究生: |
陳冠志 Chen, Kuan-chih |
|---|---|
| 論文名稱: |
掃描式表面電位顯微術應用於SPM探針電容模型之理論建立及實驗驗證 Application of Scanning Surface Potential Microscopy to the Theoretical Study and Experimental Verification on Capacitance Model |
| 指導教授: |
林仁輝
Lin, Jen-fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 電容模型 、圓錐 、角錐 、掃描探針顯微術 、掃描式表面電位顯微術 、凱文力顯微術 、靜電力 、面電荷密度 |
| 外文關鍵詞: | Capacitance Model, Cone, Electrostatic forces, KFM, SSPM, SPM, Pyramid, Surface charge density |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探針與樣品之間的電容效應,對於EFM與SSPM的量測及研究上有著不可忽視的影響,本論文對SPM使用之金屬鍍膜探針與金屬樣品之間的電容進行探討。將探針電容視為探針尖端(apex)球面(sphere)電容與側面(lateral surface)電容兩部分。在本研究中認為探針上的感應電荷將集中在探針的金屬表面,由面電荷密度的概念推導出圓錐與角錐兩種不同形貌的探針電容模型。利用面電荷密度的關係式來說明探針球面與側面上的電荷集中情形,並討論圓錐與角錐側面上電荷分佈的不同。並將特徵角(半錐角)與特徵半徑對電容模型與電容靜電力之間的影響加以討論完整的介紹。由本研究模型所得之靜電力在距離約小於10nm內,由球面電容主導;當約大於10nm後,靜電力漸漸由側面電容主導,此與Belaidi等人的研究結論相同。
本文的電容模型與最常用的導體球模型進比較與討論,在距離極小的情形,靜電力幾乎相同,但電容差異甚大。與Hudlet等人的靜電力模型相比,可說明本電容模型轉換為靜電力後的可行性與合理性。最後試著利用SSPM的基本理論來探討表面電位資訊與電容之間的關係。
This research studies the capacitor between tip coated metallic films and metallic sample. We consider that the tip capacitance can composed of apex sphere and lateral surface capacitance. The charge inducing on the tip is considered as concentrated on the metal surface of the tip, so the concept of surface charge density is applied establish the capacitor model of cone and pyramid. The equation of surface charge density was proposed to explain the charge distribution on apex and lateral surface of tip, the difference of charge distribution on lateral surface of cone and pyramid was discussed. Therefore, the influence of radius and half cone angle for capacitor models and the electrostatic force. According to the present models the electrostatic force is dominated by the apex capacitor as the distance small than 10nm, whereas forces determined by lateral surface capacitor when the distance large than 100nm. This behavior is quite the same as that reported in the study of Belidi et al.
1 G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscope”, Phys. Rev. Lett. 49, 57(1983).
2 L. Boyer, F. Houze, A. Tonck, J-L. Loubet and J-M. Georges, “The influence of surface roughness on the capacitance between a sphere and a plane”, J. Phys. D. 27, 1504(1994).
3 R. Mäckel, H. Baumgärtner, and J. Ren, “The scanning Kelvin microscopy”, Rev. Sci. Instrum. 64 (3), 694(1993).
4 S. Hudlet, M. Saint Jeana, C. Guthmann, and J. Berger, “Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface”, Eur. Phys. J. B 2, 5(1998).
5 M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin probe force microscopy”, Appl. Phys. Lett. 58 (25), 24(1991)
6 H. O. Jacobs, H. F. Knapp, S. Müller, and A. Stemmer, “Surface potential mapping: A qualitative material contrast in SPM”, Ultramicroscopy 69, 39(1997).
7 R. Dianoux, F. Martins, F. Marchi, C. Alandi, F. Comin, and J. Chevrier, “Detection of electrostatic forces with an atomic force microscope: Analytical and experimental dynamic force curves in the nonlinear regime”, Phys. Rev. B 68,045403(2003)
8 Y. Rosenwaks, R. Shikler, Th. Glatzel, and S. Sadewasser, “Kelvin probe force microscopy of semiconductor surface defects”, Phys. Rev. B 70, 085320(2004).
9 B. J. Rodriguez, W.-C. Yang, R. J. Nemanich, and A. Gruverman, “Scanning probe investigation of surface charge and surface potential of GaN-based heterostructures”, Appl. Phys. Lett. 86, 112115(2005).
10 G. Kolry, and M. G. Spenser, “Surface potential measurement on GaN and AlGaN/GaN heterostructures by scanning Kelvin probe microscopy”, J. Appl. Phys. 90 (1), 337(2001).
11 G. Binning, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett. 56, 930(1986).
12 R. Shikler, T. Meoded, N. Fried, B. Mishori, and Y. Rosenwaks, “Two-dimensional surface band structure of operating light emitting devices”, J. Appl. Phys. 86, 107 (1999).
13 S. Hudlet, M. S. Jean, B. Roulet, J. Berger, and C. Guthmann, “Electrostatic forces between a metallic tip and semiconductor surfaces”, J. Phys. I. France 4, 1725(1994).
14 A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffman, P. Kaszuba, and C. Daghlian, “Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy”, J. Appl. Phys. 77 (5), 1888 (1995).
15 G. H. Buh, H. J. Chung, J. H. Yi, I. T. Yoon and Y. Kuk, “Electrical Characterization of an Operating Si pn-Junction Diode with Scanning Capacitance Microscopy and Kelvin Probe Microscopy”, J. Appl. Phys. 90 (1), 443(2001)
16 J. Colchero, A. Gil, and A. M. Baró, “Resolution enhancement and improved data interpretation in electrostatic force microscopy”, Phys. Rev. B. 64, 245403(2001).
17 M. S. Jean, S. Hudlet, B. Roulet, C. Guthmann, and J. Berger, “Van der Waals and capacitive forces in atomic force microscopies”, J. Appl. Phys. 86, 5245(1999).
18 S. Belaidi, P. Girard and G. Leveque, “Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions”, J. Appl. Phys. 81, 3(1997).
19 B. M. Law and F. Rieutord, “Electrostatic forces in atomic force microscopy”, Phys. Rev. B. 66, 0.5402(2002).
20 O. Cherniavskaya, L. Chen, V. Weng, L. Yuditsky and L. E. Brus, “ Quantitative Noncontact Electrostatic Force Imaging of Nanocrystal Polarizability”, J. Phys. Chem. B, 107,1525-1531(2003).
21 L. Fumagalli, G. Ferreri, M. Sampietro, I. Casuso, E. Martínez, J. Samitier and G. Gomila, “Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy”, Nanotechnology. 17, 4581-4587(2006).
22 Dawn Bonnell (Editor), Scanning Probe Microscopy and Spectroscopy, 2nd ed., John Wiley & Sons, Inc., 2001.
23 D. Sarid, Scanning Force Microscopy With Applications to Electric, Magnetic and Atomic Forces, Revised ed, Oxford University Press, New York, 1994.
24 J. W. Gardner, V. k. Varadan and O. O. Awadelkarim, Microsensors MEMS and Smart Devices, John Wiley & Sons, Inc.
25 Bharat Bhushan (Series Editor), Handbook of Micro/Nano Tribology, CRC press, 1995.
26 D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley Press, Inc., 1992.
27 Nanosenesors Inc., product catalog, PointProbePlus(PPP) Series(http://www.nanosensors.com/)
28 Nanoworld Inc., (http://www.nanoworld.com/)