簡易檢索 / 詳目顯示

研究生: 林秀玲
Lin, Hsiu-Ling
論文名稱: 電紡絲法製備銀/聚甲基丙烯酸甲酯複合網狀結構於透明電極之研究
Fabrication and Characterization of Electrospun Ag/PMMA Composite Webs as Transparent Electrode
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 100
中文關鍵詞: 電紡絲複合纖維透明電極片電阻穿透率
外文關鍵詞: Transparent electrode, Rs
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電紡絲法製備三氟醋酸銀/ 聚甲基丙烯酸甲酯(CF3COOAg/PMMA)複合纖維,將複合纖維中的銀還原並裂解PMMA以獲得透明導電網狀結構,其製作方式可分為熱處理法(thermal treatment)以及紫外光處理法(UV treatment)。
    熱處理法分為兩階段,第一階段為纖維中銀奈米顆粒的熱還原,第二階段為PMMA的熱裂解;以熱處理製作之透明電極其片電阻受到CF3COOAg 的摻雜含量影響,當摻雜比例為20.0 wt%時可獲得導電性佳的透明電極,片電阻為14.86 ohm/sq、穿透率32.0%;然而摻雜比例為15.3 wt%時獲得之透明電極具有片電阻42 Mohm/sq、穿透率65.4%,由於CF3COOAg 的摻雜量較少時,電紡絲複合纖維平均值徑下降,因此穿透率提高但相對也造成導電性的損失。此外本研究將對熱處理條件影響獲得之透明電極進行討論。
    紫外光處理法以點光源紫外光照射電紡絲複合纖維,同時還原纖維中的銀奈米顆粒並裂解PMMA,以此法製作之透明電極性質最佳為片電阻625 ohm/sq、穿透率83.0%,已達車用顯示器之應用範圍。此外本研究對銀還原與PMMA裂解的機制進行觀察與分析,結果顯示銀奈米顆粒在極短的時間內還原於纖維中,並隨照射時間增加有集中於纖維中心的趨勢,其原因仍待進一步討論,此外亦發現短時間的紫外光照射即可使PMMA側鏈裂解。

    In this study, CF3COOAg/PMMA composite fiber webs were fabricated by electrospinning. The Ag transparent electrode (TE) was obtained by reduction of Ag and degradation of PMMA from the composite fibers. The methods using to fabricate TE were thermal and UV treatment.
    The thermal treatment is two step processes. First step is thermal reduction of Ag and second step is degradation of PMMA. The sheet resistance of TE is influenced by the concentration of CF3COOAg. With 20.0 wt% CF3COOAg addition, the optimal TE has sheet resistance 14.86 ohm/sq and the transmittance 32.0%. On the other hand, with 15.3 wt% CF3COOAg addition, the sheet resistance is 42 Mohm/sq and the transmittance is 65.4%. The average diameters of
    electrospun composite fibers become smaller due to the low conecentration of CF3COOAg which results in elevating the transmittance and decreasing the conductivity. Besides, the heat treatment conditions of formation TE would be discussed.
    The UV treatment process is irradiating the composite fiber webs by UV spotlight. The UV light reduced the Ag nanoparticles and degraded PMMA at the same time. The optimal TE has sheet resistance 625 ohm/sq and transmittance
    83.0%.In addition, the mechanism of reduction of Ag and degradation of PMMA were be observed and analyzed. The results showed that Ag nanoparticles were reduced in short irradiation time and assembled in the center of the fibers with the irradiation time increased. The side chain cleavage of PMMA can be also observed within short UV irradiation time.

    摘要......................................................I Abstract ................................................II 目錄.....................................................III 表目錄.....................................................V 圖目錄....................................................VII 1-1 前言...................................................1 1-2 研究動機與目的...........................................3 第二章 理論基礎與文獻回顧......................................6 2-1 金屬材料的基本性質........................................6 2-1-1 金屬的導電性...........................................6 2-1-2 金屬的光學特性.........................................7 2-2 金屬奈米結構透明電極......................................8 2-2-1 金屬薄膜..............................................9 2-2-2 金屬網格.............................................10 2-2-3 金屬奈米線與奈米纖維...................................11 2-2-4 透明電極種類比較..................................12 2-3 Figure of Merit ..................................13 2-4 電紡絲奈米纖維..............................16 2-4-1 電紡絲原理.................................16 2-4-2 金屬/高分子電紡絲複合纖維...........................17 2-5 聚甲基丙烯酸甲酯Poly(methyl methacrylate)(PMMA)基本性質...19 第三章 實驗流程與儀器設備....................................33 3-1 藥品......................................33 3-2 實驗流程.................................33 3-2-1 玻璃基板清洗................................33 3-2-2 CF3COOAg/PMMA 電紡絲複合纖維.........................33 3-2-3 熱處理法製備銀/高分子複合纖維透明電極................35 3-2-4 紫外光處理法製備銀/高分子複合纖維透明電極...............36 3-2-4-1 紫外光處理CF3COOAg/PMMA 複合纖維製作透明纖維36 3-2-4-2 紫外光裂解PMMA 與還原銀之機制探討..................37 3-3 材料性質分析儀器..................................38 3-3-1 奈米纖維表面形貌與性質分析.........................38 3-3-2 透明電極的穿透率與片電阻值量測..............40 第四章 實驗結果與討論.........................47 4-1 電紡絲CF3COOAg/PMMA 複合纖維尺寸統計分析..................47 4-1-1PMMA 濃度對纖維尺寸的影響.........................47 4-1-2 CF3COOAg 濃度對纖維尺寸的影響.................48 4-1-3 電紡絲時間與纖維密度、覆蓋率統計......................48 4-2 熱處理製作透明電極..........................49 4-2-1 CF3COOAg/PMMA 複合纖維熱分析.................49 4-2-2 熱處理條件對透明電極的影響.........................50 4-2-2-1 熱還原銀奈米顆粒之觀察...................50 4-2-2-2 熱處理氣氛對銀網狀結構的影響....................51 4-2-3 不同尺寸之複合纖維經熱處理製作透明電極性質比較........52 4-3 紫外光處理製作銀纖維透明電極...........................53 4-3-1 紫外光強度對銀網狀結構生成之影響.......................53 4-3-3 紫外光裂解PMMA 與還原銀的機制探討.................55 4-4 熱處理與紫外光處理之透明電極性質比較及其Figure of Merit....58 第五章 結論................................91 參考文獻........................94

    [1] 曲喜新, 揚邦朝, 姜節儉, 張懷武, “電子薄膜材料,” 北京:科學出版社,
    1996
    [2] 拓墣產業研究所, “觸動人心好商機:觸控面板人性化介面新趨勢,” 台北:拓
    樸產業研究所, 2008
    [3] D. S. Hecht, L. B. Hu, and G. Irvin, “Emerging Transparent Electrodes Based
    on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,”
    Advanced Materials, 23, 1482-1513, 2011
    [4] J. T. Littleton, “Insulator,” US Patent, 2118795, 1938
    [5] J. M. Mochel, “Electrically Conducting Coatings on Glass and Other Ceramic
    Bodies,” US Patent, 2564707, 1951
    [6] T. Minami, “Transparent Conducting Oxide Semiconductors for Transparent
    Electrodes,” Semiconductor Science and Technology, 20, S35-S44, 2005
    [7] H. Shirakawa, “Synthesis and Characterization of Highly Conducting
    Polyacetylene,” Synthetic Metals, 69,3-8, 1995
    [8] A. G. Macdiarmid, R. J. Mammone, R. B. Kaner and S. J. Porter, “The Concept
    of Doping of Conducting Polymers- the Role of Reduction Poentials,”
    Philosophical Transactions of the Royal Society of London Series AMathematical
    Physical and Engineering Sciences, 314, 3-15, 1985
    [9] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J.
    J. Boland, and J. N. Coleman, “ Silver Nanowire Networks as Flexible,
    Transparent, Conducting Films: Extemely High DC to Optical Conductivity
    Ratios,” Acs Nano, 3, 1767-1774, 2009
    [10] Z. B. Yu, Q. W. Zhang, L. Li, Q. Chen, X. F. Niu, J. Liu, and Q. B. Pei, “Highly
    Flexible Silver Nanowire Electrodes for Shape-memory Polymer
    Light-Emitting Diodes,” Advanced Materials, 23, 664-668, 2011
    [11] H. Wu, L. B. Hu, D. S. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. A. Yang,
    M. D. McGehee and Y. Chi, “Electrospun Metal Nanofiber Webs as
    High-Performance Transparent Electrode,” Nano Letters, 10, 4242-4248,2010
    [12] M. G. Kang and L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes
    and their Application in Organic Light-Emitting Diodes,” Advanced Materials,
    19, 1391-1396, 2007
    [13] M. G. Kang, M. S. Kim, J. S. Kim and L. J. Guo, “Organic Solar Cells Using
    Nanoimprinted Transparent Metal Electrodes,” Advanced Materials, 20,
    4408-4413, 2008
    [14] D. S. Ghosh, T. L. Chen and V. Pruneri, “High Figure-of-Merit Ultrathin
    Metal Transparent Electrodes Incorporating a Conductive Grid,” Applied
    Physics Letters, 96, 041109, 2010
    [15] W. Gaynor, G. F. Burkhard, M. D. McGehee and P. Peumans, “Smooth
    Nanowire/Polymer Composite Transparent Electrodes,” Advanced Materials,
    23, 2905-2910, 2011
    [16] H. K. Lee, E. H. Jeong, C. K. Baek and J. H. Youk, “One-Step Preparation of
    Ultrafine Poly(acrylonitrile) Fibers Containing Silver Nanoparticles,”
    Materials Letters, 59, 2977-2980, 2005
    [17] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D. A Tryk, T. Murakami and A.
    Fujishima, “Large-Scale Fabrication of Ag Nanoparticles in PVP N0anofibres
    and Net-Like Silver Nanofibre Films by Electrospinning,” Nanotechnology, 18,
    075605, 2007
    [18] N. A. M. Barakat, K. D. Woo, M. A. Kanjwal, K. E. Choi, M. S. Khil and H. Y.
    Kim, “Surface Plasmon Resonances, Optical Properties, and Electrical
    Conductivity Thermal Hystersis of Silver Nanofibers Produced by the
    Electrospinning Technique,” Langmuir, 24, 11982-11987, 2008
    [19] 林俊男, ”利用紫外線及熱誘導法製備包裹奈米金屬粒子的高分子電紡
    絲,” 國立成功大學 材料科學及工程學系 碩士班, 2006
    [20] B. G. Streetman, “Solid State Electronic Devices,” N. J.:Prentice Hall, 2000
    [21] R. A. Serway, “Principles of Physics,” London:Saunders College Pub., 1998
    [22] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr.
    and C. A. Ward, “Optical-Properties of the Metals Al, Co, Cu, Au, Fe, Ni, Pd,
    Pt, Ag, Ti and W in the Infrared and Far infrared,” Applied Optics, 22,
    1099-1119, 1983
    [23] 楊明輝, “透明導電膜,” 台北:藝軒圖書出版社, 2006
    [24] K. Fuchs, “The Conductivity of Thin Metallic Films According to the Electron
    Theory of Metals,” Proc. Cambridge Phil. Soc., 34, 100-108, 1938
    [25] E. H. Sondheimer, “The Mean Free Path of Electrons in Metals,” Advances in
    Physics, 50, 499-537, 2001
    [26] M. Shatzkes, A. F. Mayadas and J. F. Janak, “Electical Resistivity Model for
    Polycrystalline Films: The Case of Specular Reflection at External Surfaces,”
    Applied Physics Letters, 14, 345-347, 1969
    [27] A. F. Mayadas and M. Shatzkes, “Electrical-Resistivity Model for
    Polycrystalline Films: The Case of Arbitrary Reflection at External Surfaces,”
    Physics Review B, 1, 1382-1389, 1970
    [28] R. B. Pode, C. J. Lee, D. G. Moon and J. I. Han, “ Transparent Conducting
    Metal Electrode for Top Emission Organic Light-Emitting devices: Ca-Ag
    Double Layer,” Applied Physics Letters, 84, 4614-4616, 2004
    [29] D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani and V. Pruneri, “Widely
    Transparent Electrodes Based on Ultrathin Metals,” Optics Letters, 34,
    325-327, 2009
    [30] 金屬網格透明電極http://www.polyic.com/en/components.php
    [31] J. P. Lagier, M. Figlarz and F. Fievet, “Preparing Monodisperse Metal Powders
    in Micrometer and Submicrometer Size by the Polyol Process,” MRS Bulletin,
    14, 29, 1989
    [32] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia, “Uniform Silver
    Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence
    of Seeds and Poly(vinyl pyrrolidone),” Chemistry of Materials, 14, 4736-4745,
    2002
    [33] 銦錫氧化物透明電極http://www.delta-technologies.com/
    [34] Y. Xia and J. Ouyang, “ PEDOT:PSS Films with Significantly Enhanced
    Conductivities Induced by Preferential Solvation with Cosolvents and their
    Application in Polymer Photovoltaic Cells,” Journal of Materials Chemistry,
    21, 4927-4936, 2011
    [35] J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner and T. J. Marks, “Organic
    Light-Emitting Diodes Having Carbon Nanotube Anodes,” Nano Letters, 6,
    2472-2477, 2006
    [36] D. Choi, M. Y. Choi, H. J. Shin, S. M. Yoon, J. S. Seo, J. Y. Choi, S. Y. Lee, J.
    M. Kim and S. W. Kim, “ Nanoscale Networked Single-Walled
    Carbon-Nanotube Electrodes for Transparent Flexible Nanogenerators,”
    Journal of Physical Chemistry C, 144, 1379-1384, 2010
    [37] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.
    R. Kim, Y. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong
    and S. Lijima, “Roll-to-Roll Production of 30-Inch Graphene Films for
    Transparent Electrodes,” Nature Nanotechnology, 5, 574-578, 2010
    [38] J. Y. Lee, S. T. Connor, Y. Cui and P. Peumans, “Solution-Processed Metal
    Nanowire Mesh Transparent Electrodes,” Nano Letters, 8 689-692, 2008
    [39] X. Y. Zeng, Q. K. Zhang, R. M. Yu and C. Z. Lu, “A New Transparent
    Conductor: Silver Nanowire Film Buried at the Surface of a Transparent
    Polymer,” Advanced Materials, 22, 4484-4488, 2010
    [40] L. B. Hu, H. S. Kim, J. Y. Lee, P. Peumans and Y. Cui, “Scalable Coating and
    Properties of Transparent, Flexible, Silver Nanowire Electrodes,” Acs Nano, 4
    2955-2963,2010
    [41] J. L. Elechiguerra, L. L. Leticia, C. Liu, G. G. Domingo, C. B. Alejandra and
    M. J. Yacaman, “Corrosion at the Nanoscale: The Case of Silver Nanowires
    and Nanoparticles,” Chemistry of Materials, 17, 6042-6052, 2005
    [42] D. B. Fraser and H. D. Cook, “ Highly Conductive, Transparent Films of
    Sputtered In2-xSnxO3-y,” Journal of the Electrochemical Society, 119, 1368-1374,
    1972
    [43] G. Haacke, “ New Figure of Merit for Transparent Conductors,” Journal of
    Applied Physics, 47, 4086-4089, 1976
    [44] V. K. Jain and A. P. Kulshreshtha, “Indium-Tim-Oxide Transparent Conducting
    Coatings on Silicon Solar-Cells and their Figure of Merit,” Solar Energy
    Materials, 4 151-158, 1981
    [45] B. S. Shim, J. Zhu, E. Jan, K. Critchley and N. A. Kotov, “Transparent
    Conductors from Layer-by-Layer Assembled SWNT Films: Importance of
    Mechanical Properties and a New Figure of Merit,” Acs Nano, 4, 3725-3734,
    2010
    [46] Z. Chen, B. Cotterell, W. Wang, E. Guenther and S. J. Chua, “ A Mechanical
    Assessment of Flexible Optoelectronic Devices,” Thin Solid Films, 394,
    202-206, 2001
    [47] A. Formhals, “Process and Apparatus for Preparing Threads,” US Patent,
    1975504, 1934
    [48] J. Latham and I. W. Roxburgh, “ Disintegration of Pairs of Water Drops in an
    Electric Field,” Proceedings of the Royal Society of London Series A -
    Mathematical and Physical Sciences, 295, 84, 1966
    [49] G. I. Taylor and A. D. Mcewan, “The Stability of Horizontal Fluid Interface in
    a Vertical Electric Field,” Journal of Fluid Mechanics, 22, 1-15, 1965
    [50] G. I. Taylor, “The Circulation Produced in a Drop by an Electric Field,”
    Proceedings of the Royal Society of London Series A, 291, 159-166, 1996
    [51] G. I. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of
    London Series A, 313, 453-475, 1969
    [52] D. H. Reneker and I Chun, “ Nanometre Diameter Fibres of Polymer, Produced
    by Electrospinning,” Nanotechnology, 7, 216-223, 1996
    [53] H. Xu, D. Galehouse and D. H. Reneker, “Study of the Relationship Between
    Jet Diameter and Interference Color During Electrospinning,” Polymer
    Materials: Science & Engineering, 88, 37, 2003
    [54] D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, “Bending Instability
    of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning,”
    Journal of Applied Physics, 87, 4531-4547, 2000
    [55] S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, “Micro- and
    Nanostructured Surface Morphology on Electrospun Polymer Fibers,”
    Macromolecules, 35, 8456-8466, 2002
    [56] W. K. Son, J. H. Youk, T. S. Lee and W. H. Park, “Preparation of Antimicrobial
    Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles,”
    Macromolecular Rapid Communications, 25, 1632-1637, 2004
    [57] J. M . Kim, H. I. Joh, S. M. Jo, D. J. Ahn, H. Y. Ha, S. A. Hong and S. K. Kim,
    “Preparation and Characterization of Pt Nanowire by Electrospinning Method
    for Methanol Oxidation,” Electrochemica Acta, 55, 4827-4835, 2010
    [58] N. A. M. Barakat, B. Kim and H. Y. Kim, “Production of Smooth and Pure
    Nickel Metal Nanofibers by the Electrospinning Technique: Nanofibers
    Possess Splendid Magnetic Properties,” Journal of Physical Chemistry C, 113,
    531-536, 2009
    [59] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D. A. Tryk, T. Murakami and A.
    Fujishima, “Large-Scale Fabrication of Ag Nanoparticles in PVP Nanofibres
    and Net-Like Silver Nanofibre Films by Electrospinning,” Nanotechnology, 18,
    075605, 2007
    [60] M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D.
    Weber, A. Beyer, A. Golzhauser and A. Greiner, “Preparation of
    Sub-micrometer Copper Fibers via Electrospinning,” Advanced Materials, 18,
    2384-2386, 2006
    [61] G. Han, B. Guo, L. Zhang, and B. Yang, “Conductive Gold Films Assembled on
    Electrospun Poly(methylmethacrylate) Fibrous Mats,” Advanced Materials, 18,
    1709-1712, 2006
    [62] B. G. Burke, T. J H. Jr, A. B Spisak and K. A Williams, “Deep UV Pattern
    Definition in PMMA,” Nanotechnology, 19, 215301, 2008
    [63] E. Reichmanis and L. F. Thompson, “Polymer Materials for Microlithography,”
    Chemical Reviews, 89, 1273-1289, 1989
    [64] C. Wochnowski, S. Metev, G. Sepold, “UV-Laser-Assisted Modification of the
    Optical Properties of Polymethylmethacrylate,” Applied Surface Science, 154,
    706-711, 2000
    [65] C. Wochnowski, M. A. Shams Eldin, S. Metev, “UV-Laser-Assisted
    Degradation of Poly(methylmethacrylate),” Polymer Degradation and Stability,
    89, 252-264, 2005
    [66] M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin and
    Y. Xia, “Controlling the Synthesis and Assembly of Silver Nanostructures for
    Plasmonic Applications,” Chemical Reviews, 111, 3669-3712, 2011
    [67] A. Koshi, K. Yim and S. Shivkumar, “Effect of Molecular Weight on Fibrous
    PVA Produced by Electrospinning,” Materials Letters, 58, 493-497, 2004
    [68] J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C Beck Tan, “The Effect of
    Processing Variables on the Morphology of Electrospun Nanofibers and
    Texiles,” Polymer, 43, 261-272, 2001
    [69] X. Zong, K. Kim, D. Fang, S. Ran, B. S Hsiao and B. Chu, “Structure and
    Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes,”
    Polymer, 42, 4403-4412, 2002
    [70] C. Mit-uppatham, M. Nithitanakul and P. Supapho, “Ultrafine Electrospun
    Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and
    Average Fiber Diameter,” Macromolecular Chemistry and Physics, 205,
    2327-2338, 2004
    [71] J. D. Peterson, S. Vyazovkin and C. A. Wight, “Kinetic Study of Stabilizing
    Effect of Oxygen on Thermal Degradation of Poly(methyl methacrylate),”
    Journal of Physics Chemistry B, 103, 8087-8092, 1999
    [72] A. Panneerselvam, M. A. Malik, P. O’Brien and M. Helliwell, “The
    Aerosol-Assisted CVD of Silver Films from Single-Source Precursors,”
    Chemical Vapor Deposition, 15, 57-63, 2009
    [73] C. C. Zhang, X. Li, Y. Yang and C. Wang, “Polymethylmethacrylate/Fe3O4
    Composite Nanofiber Membranes with Ultra-Low Dielectric Permittivity,”
    Applied Physics A, 97, 281-285, 2009
    [74] B. G. Yugang Sun, B. Mayers and Y. Xia, “Crystalline Silver Nanowires by Soft
    Solution Processing,” Nano Letters, 2, 165-168, 2002
    [75] R. L. Zong, J. Zhou, Q. Li, B. Du, B. Li, M. Fu, X. W. Qi and L. T. Li,
    “Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in
    Anodic Alumina Membrane,” Journal of Physical Chemistry B, 108,
    16713-16716, 2004
    [76] A. A. Omrani and N. Taghavinia, “Photo-Induced Growth of Silver
    Nanoparticles Using UV Sensitivity of Cellulose Fibers,” Applied Surface
    Science, 258, 2373-2377, 2012
    [77] S. K. Dirlikov and J. L. Koenig, “Assignment of the Carbon-Hydrogen
    Stretching and Bending Vibrations of Poly(methyl methacrylate) by Selective
    Deuteration,” Applied Spectroscopy, 33, 555-561, 1979
    [78] S. E. Paramonov, N. P. Kuzmina and S. I. Troyanov, “Synthesis and Crystal
    Structure of Silver(I) Carboxylate Complexes, Ag(PnBu3)[C(CH3)3COO] and
    Ag(Phen)2[CF3COO]H2O,” Polyhedron, 22, 837-841, 2003
    [79] “Handbook of the Elements and Native Oxides,” XPS International Inc., 1999
    [80] Y.Yang, J. Shi, T. Tanaka and M. Nogami, “Self-Assembled Silver Nanochains
    for Surface-Enhanced Raman Scattering,” Langmuir, 23, 12042-12047, 2007
    [81] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi
    and B. H. Hong, “Large-Scale Pattern Growth of Stretchable Transparent
    Electrodes,” Nature, 457, 706-710, 2009

    下載圖示 校內:2017-08-21公開
    校外:2017-08-21公開
    QR CODE