| 研究生: |
楊氏金蓮 Lien, Duong Thi Kim |
|---|---|
| 論文名稱: |
具有AlxZn(1-x)O奈米棒結構電子傳輸層之鈣鈦礦太陽能電池 Perovskite Solar Cell Having AlxZn(1-x)O Nanorod Electron Transport Layer |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 鈣鈦礦 、太陽能電池 、氧化鋅奈米棒 、鋁摻雜氧化奈米棒 |
| 外文關鍵詞: | perovskite, solar cells, ZnO nanorods, Al doped ZnO nanorods |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在目前的工作中,我們已經調查了在鈣鈦礦型太陽能電池中使用氧化鋅奈米棒(NRs)和鋁摻雜氧化鋅(AZO)奈米棒。氧化鋅奈米棒是用化學浴沉積法合成。所以對於沉積條件影響奈米棒特徵進行了研究。關於沉積鈣鈦礦所需的奈米棒層 CH3NH3PbI3,可以使用兩步驟順序沉積法或一步驟沉積技術。鈣鈦礦上沉積的奈米層藉由檢查形貌,厚度,晶體結構,光學吸收和光致發光特性來進行優化。太陽能電池使用選定的奈米棒和鈣鈦礦層製造,其基板可為玻璃或塑料基板。利用陽光模擬器 和 電流 - 電壓測量。並探討奈米棒層特徵對太陽能電池效率的影響
In the present work, we have investigated the use of ZnO nanorods (NRs) and Al modified ZnO (AZO) NRs in perovskite solar cell. ZnO NRs were synthesized using chemical bath deposition. The effect of deposition condition on the NR characteristics was studied. Desired NR layers were used for the deposition of perovskite, CH3NH3PbI3, using either a two-step sequential deposition or a one-step deposition technique. The deposition of the perovskite on the NR layer was optimized by examining the morphology, thickness, crystalline structure, optical absorption, and photoluminescence property. Solar cells were fabricated using selected NR and perovskite layers, having either glass or plastic substrates. The resulting cells were evaluated using a sun light simulator and current-voltage measurement. The effects of the characteristics of the NR layers on the cell performance are addressed.
[1]A. van Dijken, E.A.M., D. Vanmaekelbergh, A. Meijerink, Identication of the transition responsible for the visible emission in ZnO using quantum size e!ects. Journal of Luminescence 90 (2000) 123-128, 1999.53
[2]Baeten, L., et al., Towards efficient hybrid solar cells based on fully polymer infiltrated ZnO nanorod arrays. Adv Mater, 2011. 23(25): p. 2802-5.8
[3]Brenner, T.M., et al., Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016. 1(1): p. 15007.2
[4]Chen, J., et al., Crystal organometal halide perovskites with promising optoelectronic applications. J. Mater. Chem. C, 2016. 4(1): p. 11-27.3
[5]Chen, P., et al., TiO2passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells. RSC Adv., 2016. 6(63): p. 57996-58002.37
[6]Chen, Q., et al., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015. 10(3): p. 355-396.6
[7]Chen, T.-L. and J.-M. Ting, Correlation between seed layer characteristics and structures/properties of chemical bath synthesized ZnO nanowires. Surface and Coatings Technology, 2016.31
[8]Deng, J., et al., Arrays of ZnO/AZO (Al-doped ZnO) nanocables: a higher open circuit voltage and remarkable improvement of efficiency for CdS-sensitized solar cells. J Colloid Interface Sci, 2014. 418: p. 277-82.1
[9]Dhara, S., et al., Aluminum doped core-shell ZnO/ZnS nanowires: Doping and shell layer induced modification on structural and photoluminescence properties. Journal of Applied Physics, 2013. 114(13): p. 134307.44
[10]Di Giacomo, F., et al., High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. Journal of Power Sources, 2014. 251: p. 152-156.2
[11]Dimesso, L., et al., Properties of CH3NH3PbX3(X = I, Br, Cl) Powders as Precursors for Organic/Inorganic Solar Cells. Chemistry of Materials, 2014. 26(23): p. 6762-6770.4
[12]Dong, J., et al., Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem Commun (Camb), 2014. 50(87): p. 13381-4.10
[13]Du, Y., et al., Structural and optical properties of nanophase zinc oxide. Applied Physics A: Materials Science & Processing, 2003. 76(2): p. 171-176.61
[14]El-Brolossy, T.A., O. Saber, and S.S. Ibrahim, Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique. Chinese Physics B, 2013. 22(7): p. 074401.50
[15]Fujihara, S., A. Suzuki, and T. Kimura, Ga-doping effects on electrical and luminescent properties of ZnO:(La,Eu)OF red phosphor thin films. Journal of Applied Physics, 2003. 94(4): p. 2411.51
[16]Green, M.A., A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nature Photonics, 2014. 8(7): p. 506-514.1
[17]Gurylev, V., C.Y. Su, and T.P. Perng, Distribution pattern and allocation of defects in hydrogenated ZnO thin films. Phys Chem Chem Phys, 2016. 18(23): p. 16033-8.55
[18]H. Cao, Y.G.Z., H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline film. APPLIED PHYSICS LETTERS, 1998. 73.48
[19]Hussain, S.Q., et al., Uniform 3D hydrothermally deposited zinc oxide nanorods with high haze ratio. Materials Science in Semiconductor Processing, 2015. 37: p. 99-104.27
[20]Jung, H.S. and N.G. Park, Perovskite solar cells: from materials to devices. Small, 2015. 11(1): p. 10-25.8
[21]Kim, H.-K., et al., Inductively-coupled-plasma reactive ion etching of ZnO using BCl3-based plasmas and effect of the plasma treatment on Ti/Au ohmic contacts to ZnO. Thin Solid Films, 2004. 447-448: p. 90-94.58
[22]LDai, X., WJWang, T Zhou and B Q Hu, Growth and luminescence characterization of large-scale zinc oxide nanowires. J. Phys.: Condens. Matter 15 (2003) 2221–2226.47
[23]Liang, L., et al., Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS Appl Mater Interfaces, 2014. 6(23): p. 20585-9.6
[24]Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-8.17
[25]Luo, S. and W.A. Daoud, Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. J. Mater. Chem. A, 2015. 3(17): p. 8992-9010.67
[26]M. Chen , X.W., Y.H. Yu , Z.L. Pei , X.D. Bai , C. Sun , R.F. Huang , and L.S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Applied Surface Science 1999. 158(2000): p. 2000 134–140.41
[27]Mahmood, K., B.S. Swain, and A. Amassian, 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 2015. 5(17): p. n/a-n/a.36
[28]Mahmood, K., B.S. Swain, and H.S. Jung, Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale, 2014. 6(15): p. 9127-38.9
[29]Mahmoud, S.A. and O.A. Fouad, Synthesis and application of zinc/tin oxide nanostructures in photocatalysis and dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015. 136: p. 38-43.3
[30]Malinkiewicz, O., et al., Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers. Advanced Energy Materials, 2014. 4(15): p. n/a-n/a.16
[31]Motta, C., et al., Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat Commun, 2015. 6: p. 7026.68
[32]Na, S.-W., et al., Investigation of process window during dry etching of ZnO thin films by CH[sub 4]–H[sub 2]–Ar inductively coupled plasma. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(4): p. 898.57
[33]Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2423-2429.55
[34]Park, N.-G., Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015. 18(2): p. 65-72.63
[35]Qiu, J., M. Guo, and X. Wang, Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl Mater Interfaces, 2011. 3(7): p. 2358-67.4
[36]Saliba, M., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci., 2016.30
[37]Saoud, K., et al., Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications. Materials Research Bulletin, 2015. 63: p. 134-140.22
[38]Saravana Kumar, R., et al., Growth of novel ZnO nanostructures by soft chemical routes. Journal of Alloys and Compounds, 2010. 506(1): p. 351-355.23
[39]Shan, F.K. and Y.S. Yu, Band gap energy of pure and Al-doped ZnO thin films. Journal of the European Ceramic Society, 2004. 24(6): p. 1869-1872.52
[40]Shao, S., et al., Enhanced performance of inverted polymer solar cells by using poly(ethylene oxide)-modified ZnO as an electron transport layer. ACS Appl Mater Interfaces, 2013. 5(2): p. 380-5.5
[41]Son, D.-Y., et al., Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite Solar Cell. The Journal of Physical Chemistry C, 2015. 119(19): p. 10321-10328.35
[42]Son, D.-Y., et al., 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. The Journal of Physical Chemistry C, 2014. 118(30): p. 16567-16573.14
[43]Sun, S., et al., The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci., 2014. 7(1): p. 399-407.64
[44]Tan, W.K., et al., Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction. International Journal of Energy Research, 2013: p. n/a-n/a.13
[45]Tanaka, K., et al., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, 2003. 127(9-10): p. 619-623.5
[46]Tanaka, Y., et al., Active Hydroxyl Groups on Surface Oxide Film of Titanium, 316L Stainless Steel, and Cobalt-Chromium-Molybdenum Alloy and Its Effect on the Immobilization of Poly(Ethylene Glycol). Materials Transactions, 2008. 49(4): p. 805-811.60
[47]Umar, A., et al., Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology, 2006. 17(16): p. 4072-7.45
[48]Vanheusden, K., et al., Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996. 79(10): p. 7983.54
[49]Wang, M., et al., A modified sequential method used to prepare high quality perovskite on ZnO nanorods. Chemical Physics Letters, 2015. 639: p. 283-288.34
[50]Wang, Y.-G., et al., Lowering of stimulated emission threshold of zinc oxide by doping with thermally diffused aluminum supplied from sapphire substrate. Journal of Applied Physics, 2006. 100(2): p. 023524.62
[51]Woo, J.C., et al., Etching characteristic of ZnO thin films in an inductively coupled plasma. Surface and Coatings Technology, 2008. 202(22-23): p. 5705-5708.59
[52]Xie, Y., et al., Enhanced Performance of Perovskite CH3NH3PbI3 Solar Cell by Using CH3NH3I as Additive in Sequential Deposition. ACS Appl Mater Interfaces, 2015. 7(23): p. 12937-42.65
[53]Yang, Q., et al., Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. Nano Lett, 2011. 11(9): p. 4012-7.56
[54]Yin, W.-J., et al., Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A, 2015. 3(17): p. 8926-8942.7
[55]Zaman, S., Synthesis of ZnO, CuO and their Composite Nanostructures for Optoelectronics, Sensing and Catalytic Applications .pdf. 2012.11
[56]Zhu, G., et al., Black brookite titania with high solar absorption and excellent photocatalytic performance. Journal of Materials Chemistry A, 2013. 1(34): p. 9650.66