簡易檢索 / 詳目顯示

研究生: 游秉程
You, Bing-Cheng
論文名稱: 採用氧化鋁鉿介電層與鈦摻雜氧化銦鎵鋅通道於薄膜電晶體特性優化及可靠度改善研究
Enhanced Electrical Performance and Reliability of Ti-IGZO Thin-Film Transistors with HfxAl1-xO Gate Dielectrics
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 109
中文關鍵詞: 鋁摻雜氧化鉿鈦摻雜氧化銦鎵鋅共濺射薄膜電晶體
外文關鍵詞: Al-doped, HfO2, Ti-doped, IGZO, Co-sputtering, Thin film transistor
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以共濺射技術改善薄膜電晶體之介電層及通道層品質,並進行元件電特性量測、分析與可靠度之研究。
    本研究主要分為三部分,第一部分為研製氧化鋁鉿(HfxAl1-xO)介電層搭配氧化銦鎵鋅薄膜電晶體,觀察不同比例之鋁對其特性影響。第二部分為研製鈦摻雜氧化銦鎵鋅(Ti-doped IGZO),同樣以共濺射技術來調變鈦含量,並觀測其不同比例下之電特性。為進一步提升元件特性,本論文亦討論以共濺射製程技術製備之氧化鋁鉿介電層與鈦摻雜氧化銦鎵鋅通道層於單一退火條件下,有無沉積後退火對電特性的影響。第三部分為本論文核心,旨為觀測鋁於氧化鉿及鈦於氧化銦鎵鋅之效益,探討各項可靠度變化。
    於本論文第一部分,實驗上以共濺射法共靶氧化鉿及氧化鋁,固定氧化鉿濺射功率,藉由調變氧化鋁之濺射功率來改變鋁含量。基於高介電材料為高缺陷密度材料,需配合高溫退火改善其特性,本研究採用三元材料氧化鋁鉿擁有較高熱穩定度抗抵晶相形成的優勢。材料分析顯示Hf0.88Al0.12O擁有較低表面粗糙度(surface roughness)及氧空缺含量,再由J-V特性分析得知擁有極低漏電流。綜觀各項薄膜材料分析,Hf0.88Al0.12O應為最適化比例。於TFT方面,亦發現Hf0.88Al0.12O/IGZO TFT展現最佳的電特性,於氧氣環境下進行600 oC熱退火10分鐘後,其元件電流開關比為6.82×107、次臨界擺幅為108 mV/dec、載子移動率為18.06 cm2/V∙s、界面缺陷密度為1.75×1012 cm-2eV-1。
    於本論文第二部分,為了解決氧化銦鎵鋅高缺陷密度的難題,選用低電負度(即高功函數)的鈦元素摻入氧化銦鎵鋅抑制氧空缺生成,優化氧化銦鎵鋅其界面及薄膜品質。根據實驗結果顯示,鈦可捕捉游離氧以填補薄膜的氧空缺,有效修補界面缺陷使閘極控制力再次提升,並減輕界面缺陷對載子移動時的干擾,其漏電隨類施體能階密度減少而降低。於氮氣環境下進行300 oC熱退火10分鐘後,Hf0.88Al0.12O/Ti(2.0%)-IGZO TFT展現最佳的電特性,其元件電流開關比為3.26×108、次臨界擺幅為86 mV/dec、載子移動率為28.63 cm2/V∙s、界面缺陷密度為9.27×1011 cm-2eV-1。
    於本論文第三部分,選用前兩部分研究所得之最佳參數,探討有無鋁之氧化鉿及有無鈦之氧化銦鎵鋅於薄膜電晶體電特性與可靠度之影響。選用最適化參數製備之HfO2/IGZO、Hf0.88Al0.12O/IGZO、Hf0.88Al0.12O /Ti(2.0 %)-IGZO TFT,分別命名為元件A、B與C,進行遲滯、正負偏壓應力、加熱及照光作用下的可靠度分析,再藉由低頻雜訊量測觀察其界面品質優劣。由實驗結果得知摻入鋁之氧化鉿擁有較低界面缺陷密度及較高薄膜品質,而摻入鈦於氧化銦鎵鋅有效改善薄膜及界面品質,因此Hf0.88Al0.12O /Ti(2.0 %)-IGZO TFT於各項可靠度分析下,皆展現最小臨界電壓偏移量。上述三個部分之實驗結果已達成本論文優化薄膜電晶體之元件電特性與可靠度之標的。
    本論文成功以共濺射製備鋁摻雜氧化鉿介電層及鈦摻雜氧化銦鎵鋅通道層,並應用於薄膜電晶體改善其漏電流、閘極控制能力與元件可靠度,此材料系統具備高驅動及低功耗等優良特性,於平面顯示器產業中具高度發展潛力。

    In this work, thin-film transistor (TFT) with Ti-IGZO channel layer and HfxAl1-xO gate dielectric is proposed to improve device performances and reliability. Experimental results reveal that, among three types of HfO2/IGZO, Hf1-xAlxO/IGZO, and Hf1-xAlxO/Ti-IGZO based TFTs, the Hf0.88Al0.12O/Ti(2.0%)-IGZO TFT could exhibit the best device performances with the subthreshold swing of 86 mV/dec, field effect mobility of 28.63 cm2/V∙s, on/off current ratio of 3.26×108. Especially, it shows a threshold voltage shift after 1000s positive/negative gate bias stress/white light illumination of 0.134 V/-0.089 V/-0.195 V, and as compared with the HfO2/IGZO TFT which has corresponding values of 0.612 V/-0.507 V/-0.657 V. The remarkable improvements are attributed to the Al incorporation could reduce oxygen vacancies and improve surface roughness of HfO2 to suppress surface scattering and the amount of charge trapping during the stress test as well as Ti incorporation reduces defect density in the channel layer.

    目錄 第一章 緒論 1 1-1 平面顯示器產業發展概論 1 1-2 非晶型氧化鋅基發展概論 4 1-3 高介電常數材料選用條件 9 1-4 文獻探討 16 1-5 研究動機 19 第二章 研究理論基礎建構 23 2-1 薄膜電晶體之操作原理與參數萃取 23 2-2 氧化鋁鉿缺陷修補機制 31 2-3 鈦摻雜於氧化銦鎵鋅缺陷修補機制 32 2-4 可靠度分析理論 34 2-5 閘極漏電流機制探討 40 2-6 低頻雜訊量測原理 43 第三章 薄膜與元件製備流程 46 3-1 氧化鋁鉿製備方法 46 3-2 鈦摻雜氧化銦鎵鋅薄膜電晶體製備方法 47 3-3 源/汲極歐姆接觸製備方法 48 3-4 上、下閘極結構薄膜電晶體製備流程 49 第四章 氧化鋁鉿與鈦摻雜氧化銦鎵鋅材料與電性分析 55 4-1 氧化鋁鉿材料與電性分析 55 4-1-1 XRD薄膜分析 55 4-1-2 C-V電容量測分析 57 4-1-3 J-V漏電分析 57 4-1-4 XPS薄膜分析 59 4-1-5 AFM薄膜分析 61 4-2 鈦摻雜氧化銦鎵鋅材料及電性分析 63 4-2-1 XRD薄膜分析 63 4-2-2 XPS薄膜分析 64 4-2-3 霍爾量測 66 第五章 薄膜電晶體電性與可靠度分析 68 5-1 具HfxAl1-xO介電層之TFT電性分析 68 5-1-1 介電層及通道層未退火之HfxAl1-xO/α-IGZO TFT電性分析 69 5-1-2 介電層熱退火HfxAl1-xO/α-IGZO TFT電性分析 72 5-2 具Ti-IGZO通道層之TFT電性分析 74 5-2-1 通道層未退火Hf0.88Al0.12O/Ti-doped IGZO TFT電性分析 75 5-2-2 通道層熱退火Hf0.88Al0.12O/Ti-IGZO電性分析 77 5-3 氧化鋁鉿搭配鈦摻雜於氧化銦鎵鋅可靠度分析 79 5-3-1 閘極漏電流機制分析 80 5-3-2 正、反掃遲滯分析 82 5-3-3 於室溫下正、負偏壓應力測試 83 5-3-4 熱可靠度測試 86 5-3-5 照光與負偏壓應力可靠度測試 88 5-3-6 低頻雜訊量測分析 90 5-4 氧化鋁鉿搭配鈦摻雜於氧化銦鎵鋅上、下閘極結構電性分析比較 92 第六章 結論與未來研究建議 94 6-1 結論 94 6-2 未來研究之建議 96 參考資料 98

    參考資料
    [1] J. T. Lin and Y.-Y. Chen, "A multi-site supply network planning problem considering variable time buckets– A TFT-LCD industry case," The International Journal of Advanced Manufacturing Technology, vol. 33, no. 9-10, pp. 1031-1044, Feb. 2006.
    [2] 劉美君"國家年報顯示器產業發展趨勢," 財團法人工業技術研究院。
    [3] T. P. Brody, J. A. Asars, and G. D. Dixon, “A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel,” IEEE Transactions on Electron Devices, vol. 20, no. 11, pp. 995-1001, 1973.
    [4] X. Cao et al., "Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors," ACS Nano, vol. 10, no. 11, pp. 9816-9822, Nov. 2016.
    [5] J. Bang, S. Matsuishi, and H. Hosono, "Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications," Applied Physics Letters, vol. 110, no. 23, pp. 1-5, May. 2017.
    [6] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, no. 4, pp. 1-5, Feb. 2005.
    [7] Ü. Özgür, D. Hofstetter, and H. Morkoç, "ZnO Devices and Applications: A Review of Current Status and Future Prospects," Proceedings of the IEEE, vol. 98, no. 7, pp. 1255-1268, Jul. 2010.
    [8] J.-Y. Kwon, D.-J. Lee, and K.-B. Kim, "Review paper: Transparent amorphous oxide semiconductor thin film transistor," Electronic Materials Letters, vol. 7, no. 1, pp. 1-11, Mar. 2011.
    [9] S. Parthiban and J.-Y. Kwon, "Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor," Journal of Materials Research, vol. 29, no. 15, pp. 1585-1596, Jul. 2014.
    [10] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 851-858, Apr. 2006.
    [11] X. Huang et al., "Temperature and gate bias dependence of carrier transport mechanisms in amorphous indium–gallium–zinc oxide thin film transistors," Solid-State Electronics, vol. 86, pp. 41-44, Apr. 2013.
    [12] A. Takagi et al., "Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4," Thin Solid Films, vol. 486, no. 1-2, pp. 38-41, Feb. 2005.
    [13] Yeo, Y.C, King, T.J.; Hu, C. "Direct tunneling leakage current and scalability of alternative gate dielectrics," Appl. Phys. Lett., vol. 81, pp. 2091–2093, Sep. 2002.
    [14] N. Umezawa, T.-J. King, and C. Hu, "First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high dielectrics," Applied Physics Letters, vol. 86, no. 11, pp. 143507-1-143507-3, Mar. 2005.
    [15] S.-G. Lim et al., "Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry," Journal of Applied Physics, vol. 91, no. 7, pp. 4500-4505, Mar. 2002.
    [16] J. A. Kittl et al., "High-k dielectrics for future generation memory devices (Invited Paper)," Microelectronic Engineering, vol. 86, no. 7-9, pp. 1789-1795, Sep. 2009.
    [17] G. Ribes et al., "Review on high-k dielectrics reliability issues," IEEE Transactions on Device and Materials Reliability, vol. 5, no. 1, pp. 5-19, Mar. 2005.
    [18] N. Miyata, "Study of Direct-Contact HfO2/Si Interfaces," Materials (Basel), vol. 5, no. 3, pp. 512-527, Mar. 2012.
    [19] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537-1544, Jul. 1999.
    [20] S. Chander, P. Singh, S. Baishya, “Optimization of Direct Tunneling Gate Leakage Current in Ultrathin Gate Oxide FET with High-K Dielectrics” IJRDET, No1, pp. 24-30, Oct. 2013.
    [21] K. Seema and R. Kumar, "The structural and electronic properties of HfO2," Solid-State Physics, Jun. 2012.
    [22] X. Zhao and D. Vanderbilt, "First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide," Physical Review B, vol. 65, no. 23, Jun. 2002.
    [23] Y. Yang, W. Zhu, T. P. Ma, and S. Stemmer, "High-temperature phase stability of hafnium aluminate films for alternative gate dielectrics," Journal of Applied Physics, vol. 95, no. 7, pp. 3772-3777, Mar. 2004.
    [24] P. K. Park and S.-W. Kang, "Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3," Applied Physics Letters, vol. 89, no. 19, 2006.
    [25] Y. W. Yoo, W. Jeon, W. Lee, C. H. An, S. K. Kim, and C. S. Hwang, "Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes," ACS Appl Mater Interfaces, vol. 6, no. 24, pp. 22474-82, Dec. 2014.
    [26] W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, "Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics," IEEE Electron Device Letters, vol. 23, no. 11, pp. 649-651, Nov, 2002.
    [27] T. V. Perevalov et al., "Oxygen deficiency defects in amorphous Al2O3," Journal of Applied Physics, vol. 108, no. 1, Aug. 2010.
    [28] Z. Guo, F. Ambrosio, and A. Pasquarello, "Oxygen defects in amorphous Al2O3: A hybrid functional study," Applied Physics Letters, vol. 109, no. 6, Aug. 2016.
    [29] K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, "First-principles calculations of intrinsic defects in Al2O3," Physical Review B, vol. 68, no. 8, Jul. 2003.
    [30] A. Kim et al., "Surface-induced orientation of pentacene molecules and transport anisotropy on nanogroove SiO2 dielectric layer by simple scratched method: The study of surface roughness and molecular alignment on the mobility of organic thin film transistors," Organic Electronics, vol. 42, pp. 316-321, Dec. 2017.
    [31] O. Weber, M. Cassé, L. Thevenod, F. Ducroquet, T. Ernst, and S. Deleonibus, "On the mobility in high-κ/metal gate MOSFETs: Evaluation of the high-κ phonon scattering impact," Solid-State Electronics, vol. 50, no. 4, pp. 626-631, Mar. 2006.
    [32] Vissenberg, M. C. J. M. & Matters, M. Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. vol. 57, pp. 12964−12967, May. 1998.
    [33] B. Laikhtman and P. M. Solomon, "Remote phonon scattering in field-effect transistors with a high κ insulating layer," Journal of Applied Physics, vol. 103, no. 1, Jan. 2008.
    [34] J. Robertson and R. Wallace, “High-K materials and metal gates for CMOS applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015.
    [35] L. Zeng et al., "Processing-dependent thermal stability of a prototypical amorphous metal oxide," Physical Review Materials, vol. 2, no. 5, pp. 1-8, May. 2018.
    [36] P. Heremans et al., “Flexible metal-oxide thin film transistor circuits for RFID and health patches,” in IEDM Tech. Dig., pp. 3–6. Dec. 2016,
    [37] H. S. Shin, Y. S. Rim, Y.-G. Mo, C. G. Choi, and H. J. Kim, "Effects of high-pressure H2O-annealing on amorphous IGZO thin-film transistors," physica status solidi (a), vol. 208, no. 9, pp. 2231-2234, 2011.
    [38] Y. Kim, K.-H. Lee, G. Mun, K. Park, and S.-H. K. Park, "Outstanding Performance as Cu Top Gate IGZO TFT With Large Trans-Conductance Coefficient by Adopting Double-Layered Al2O3/SiNx Gate Insulator," physica status solidi (a), vol. 214, no. 12, pp.1-5, Jun. 2017.
    [39] S. Kim et al., "High-performance oxide thin film transistors passivated by various gas plasmas," ECS Meeting, 2009.
    [40] T.-L. Chen, K.-C. Huang, H.-Y. Lin, C. H. Chou, H. H. Lin, and C. W. Liu, "Enhanced Current Drive of Double-Gate a-IGZO Thin-Film Transistors," IEEE Electron Device Letters, vol. 34, no. 3, pp. 417-419, Mar. 2013.
    [41] H. Yim, D.-H. Kim, S. Choi, B. G. Choi, S. Lee, S. K. Kim, K.-S. Park, J.-U. Bae, C.-D. Kim, M. Jun, and Y. K. Hwang, “Highly stable amorphous indium gallium zinc oxide thin-film transistors with N2O plasma treatment,” in SID Int. Symp. Dig. Tech., vol. 42, pp. 1170–1172, 2011.
    [42] J.Y. Noh, D.M. Han, W. C.l Jeong, J.W. Kim, S.Y. Cha, “Development of 55 4K UHD OLED TV employing the internal gate IC with high reliability and short channel IGZO TFTs,” in SID Int. Symp. Dig. Tech. vol. 26, pp. 36–41, Nov. 2018.
    [43] C.-L. Lin, W.-Y. Chang, and C.-C. Hung, "Compensating Pixel Circuit Driving AMOLED Display With a-IGZO TFTs," IEEE Electron Device Letters, vol. 34, no. 9, pp. 1166-1168, Sep. 2013.
    [44] T.-M. Pan, F.-H. Chen, and M.-N. Hung, "Effect of annealing temperature on structural and electrical properties of high-κ YbTixOy gate dielectrics for InGaZnO thin film transistors," Semiconductor Science and Technology, vol. 30, no. 1, pp. 1-8, Nov. 2015.
    [45] Y.-Z. Fu et al., "TiSiOx gate dielectrics produced by reactive sputtering for high performance InGaZnO thin film transistors," Materials Science in Semiconductor Processing, vol. 61, pp. 125-130, Jan. 2017.
    [46] J. Q. Song, L. X. Qian, and P. T. Lai, "Improved Performance of Amorphous InGaZnO Thin-Film Transistor by Hf Incorporation in La2O3 Gate Dielectric," IEEE Transactions on Device and Materials Reliability, vol. 18, no. 3, pp. 333-336, Sep. 2018.
    [47] S. Zhou et al., "Bias Stability Enhancement in Thin-Film Transistor with a Solution-Processed ZrO2 Dielectric as Gate Insulator," Applied Sciences, vol. 8, no. 5, pp. 2-13, May. 2018.
    [48] R. Yao et al., "Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors," Applied Physics Letters, vol. 112, no. 10, pp. 1-5, Mar. 2018.
    [49] T. Takahashi et al., "Improvement of Amorphous InGaZnO Thin-Film Transistor Using High-k SrTa2O6 as Gate Insulator Deposited by Sputtering Method," physica status solid, vol. 216, no. 5, pp. 1-5, Feb. 2019.
    [50] C.-H. Hung, S.-J. Wang, P.-Y. Liu, C.-H. Wu, H.-P. Yan, N.-S. Wu, and T.-H. Lin., "Improving the electrical and hysteresis performance of amorphous igzo thin-film transistors using co-sputtered zirconium silicon oxide gate dielectrics" Mater. Sci. Semicond. Process. vol. 67, no. 84, 2017.
    [51] Kundu P, Yadav R "Effect of high-k dielectric materials on leakage current." Int J Electron Comput Sci Eng, No.1 pp. 1454–1458, Jan. 2017.
    [52] M. N. Bhuyian, R. Sengupta, P. Vurikiti, and D. Misra, "Oxygen vacancy defect engineering using atomic layer deposited HfAlOx in multi-layered gate stack," Applied Physics Letters, vol. 108, no. 18, pp. 3101-3106, Nov. 2016.
    [53] Z. F. Hou, X. G. Gong, and Q. Li, "Energetics and electronic structure of aluminum point defects in HfO2: A first-principles study," Journal of Applied Physics, vol. 106, no. 1, May. 2009.
    [54] P. Jin et al., "Annealing-temperature-modulated optical, electrical properties, and leakage current transport mechanism of sol–gel-processed high-k HfAlOx gate dielectrics," Ceramics International, vol. 43, no. 3, pp. 3101-3106, Jul. 2017.
    [55] L. Pereira et al., "Sputtered multicomponent amorphous dielectrics for transparent electronics," physica status solidi (a), vol. 206, no. 9, pp. 2149-2154, Aug. 2009.
    [56] K. Park et al., "Highly Reliable Amorphous In-Ga-Zn-O Thin-Film Transistors Through the Addition of Nitrogen Doping," IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 457-463, Jan. 2019.
    [57] H. H. Hsu, C. Y. Chang, and C. H. Cheng, "High performance IGZO/TiO2 thin film transistors using Y2O3 buffer layers on polycarbonate substrate," Applied Physics A, vol. 112, no. 4, pp. 817-820, Mar. 2013.
    [58] H.-H. Hsu, C.-Y. Chang, C.-H. Cheng, S.-H. Chiou, and C.-H. Huang, "High Mobility Bilayer Metal–Oxide Thin Film Transistors Using Titanium-Doped InGaZnO," IEEE Electron Device Letters, vol. 35, no. 1, pp. 87-89, Dec. 2014.
    [59] Christopher P. Auth and James D. Plummer, “Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET’s,” IEEE Electron Device Letters, vol. 18, no. 2, pp. 74-76, Feb. 1997.
    [60] A. Oritiz-Conde, F. J. G. Sanchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, BA review of recent MOSFET threshold voltage extraction methods, Microelectron. Reliab., vol. 42, pp. 583–596, May. 2002.
    [61] S. Jun, C. Jo, H. Bae, H. Choi, D. H. Kim, and D. M. Kim, "Unified Subthreshold Coupling Factor Technique for Surface Potential and Subgap Density-of-States in Amorphous Thin Film Transistors," IEEE Electron Device Letters, vol. 34, no. 5, pp. 641-643, Dec. 2013.
    [62] S. Chander, P. Singh, S. Baishya, “Optimization of Direct Tunneling Gate Leakage Current in Ultrathin Gate Oxide FET with High-K Dielectrics” IJRDET, No1, pp. 24-30, Oct. 2013.
    [63] H. Schroeder, "Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!," Journal of Applied Physics, vol. 117, no. 21, pp. 1-8, Jun. 2015.
    [64] S. T. Pantelides, "The electronic structure of impurities and other point defects in semiconductors," Reviews of Modern Physics, vol. 50, no. 4, pp. 797-858, Mar. 1978.
    [65] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, no. 16, pp. 1-20, Oct. 2007.
    [66] Lannoo. M, "Point Defects in Semiconductors I: Theoretical Aspects"
    [67] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin-film transistors," Sci Technol Adv Mater, vol. 11, no. 4, p. 044305, Aug. 2010.
    [68] H.-K. Noh, K. J. Chang, B. Ryu, and W.-J. Lee, "Electronic structure of oxygen-vacancy defects in amorphous In-Ga-Zn-O semiconductors," Physical Review B, vol. 84, no. 11, pp. 1-7, Sep. 2011.
    [69] W. J. Lee, B. Ryu, and K. J. Chang, "Electronic structure of oxygen vacancy in crystalline InGaO3(ZnO)m," Physica B: Condensed Matter, vol. 404, no. 23-24, pp. 4794-4796, May. 2009.
    [70] A. de Jamblinne de Meux, G. Pourtois, J. Genoe, and P. Heremans, "Defects in Amorphous Semiconductors: The Case of Amorphous Indium Gallium Zinc Oxide," Physical Review Applied, vol. 9, no. 5, pp. 1-13, Aug. 2018.
    [71] H. Xie, Y. Zhou, Y. Zhang, and C. Dong, "Chemical bonds in nitrogen-doped amorphous InGaZnO thin film transistors," Results in Physics, vol. 11, pp. 1080-1086, Nov. 2018.
    [72] J. G. Um and J. Jang, "Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C," Applied Physics Letters, vol. 112, no. 16, pp. 1-3, Apr. 2018.
    [73] R. D. Shannon, " Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides," Acta Cryst. A32, 751, Mar. 1976.
    [74] H. Li, Y. Guo, and J. Robertson, "Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional," The Journal of Physical Chemistry C, vol. 119, no. 32, pp. 18160-18166, Jul. 2015.
    [75] C. van Berkel and M. J. Powell, "Resolution of amorphous silicon thin‐film transistor instability mechanisms using ambipolar transistors," Applied Physics Letters, vol. 51, no. 14, pp. 1094-1096, Jun. 1987.
    [76] J. Eun Lee et al., "Thermal stability of metal Ohmic contacts in indium gallium zinc oxide transistors using a graphene barrier layer," Applied Physics Letters, vol. 102, no. 11, pp. 10-14, May. 2013.
    [77] B.-Y. Su, S.-Y. Chu, Y.-D. Juang, and S.-Y. Liu, "Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors," Journal of Alloys and Compounds, vol. 580, pp. 10-14, May. 2013.
    [78] J. Xu et al., "Ambient effect on thermal stability of amorphous InGaZnO thin film transistors," Solid-State Electronics, vol. 126, pp. 170-174, Aug. 2016.
    [79] K.-A. Kim, M.-J. Park, W.-H. Lee, and S.-M. Yoon, "Characterization of negative bias-illumination-stress stability for transparent top-gate In-Ga-Zn-O thin-film transistors with variations in the incorporated oxygen content," Journal of Applied Physics, vol. 118, no. 23, pp. 1-7, Dec. 2015.
    [80] X. Huang, D. Zhou, W. Xu, and Y. Wang, "Enhanced temperature and light stability of amorphous indium-gallium-zinc oxide thin film transistors by interface nitrogen doping," Journal of Vacuum Science & Technology B, vol. 36, no. 4, pp. 1-5, Dec. 2018.
    [81] K. H. Ji et al., "Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics," IEEE Electron Device Letters, vol. 31, no. 12, pp. 1404-1406, Jun. 2010.
    [82] P. Ma et al., "Low–temperature fabrication of HfAlO alloy dielectric using atomic–layer deposition and its application in a low–power device," Journal of Alloys and Compounds, vol. 792, pp. 543-549, Apr. 2019.
    [83] T.-C. Fung, G. Baek, and J. Kanicki, "Low frequency noise in long channel amorphous In–Ga–Zn–O thin film transistors," Journal of Applied Physics, vol. 108, no. 7, Oct. 2010.
    [84] G. Ghibaudo et al.," Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors," phys. stat. sol. 124, 571, pp. 574-581, Feb. 1991.
    [85] S. Christensson et al., " LOW FREQUENCY NOISE IN MOS TRANSISTORS," Solid-State Electronics. Vol. 11, pp. 797-812, Apr. 1968.
    [86] R. Carluccio, J. Stoemenos, G. Fortunato, D. B. Meakin, and M. Bianconi, "Microstructure of polycrystalline silicon films obtained by combined furnace and laser annealing," Applied Physics Letters, vol. 66, no. 11, pp. 1394-1396, Jun. 1995.
    [87] H. S. Shin, B. D. Ahn, Y. S. Rim, and H. J. Kim, "Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors," Journal of Information Display, vol. 12, no. 4, pp. 209-212, Oct. 2011.
    [88] T.-Y. Hsieh et al., "Self-Heating-Effect-Induced Degradation Behaviors in a-InGaZnO Thin-Film Transistors," IEEE Electron Device Letters, vol. 34, no. 1, pp. 63-65, Jul. 2013.
    [89] T.-C. Chen et al., "Self-heating enhanced charge trapping effect for InGaZnO thin film transistor," Applied Physics Letters, vol. 101, no. 4, pp. 63-65, Jan. 2012.
    [90] S. Hong, S. P. Park, Y. G. Kim, B. H. Kang, J. W. Na, and H. J. Kim, "Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process," Sci Rep, vol. 7, no. 1, pp. 16265, Nov. 2017.
    [91] W.-H. Wang et al., "Weak Localization and Weak Antilocalization in Double-Gate a-InGaZnO Thin-Film Transistors," IEEE Electron Device Letters, vol. 39, no. 2, pp. 212-215, Feb. 2018.
    [92] T.-C. Chen, Y. Kuo, T.-C. Chang, M.-C. Chen, and H.-M. Chen, "Stability of double gate amorphous In–Ga–Zn–O thin-film transistors with various top gate designs," Japanese Journal of Applied Physics, vol. 56, no. 12, pp. 1-3, Nov. 2017.
    [93] Jayapal Raja and Jayapal Raja "Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors," Applied physics letters, vol. 102, Artical ID 083505, pp. 1-9, Jun. 2013.
    [94] Salgado, R. Mohammadzadeh, A. Kargar, F. Geremew, A. Huang, C.-Y.; Bloodgood, M. A. Rumyantsev, S. Salguero, T. T. Balandin, A. A. "Low-Frequency Noise Spectroscopy of Charge-Density-Wave Phase Transitions in Vertical Quasi-2D 1T-TaS2 Devices," Applied Physics Express 12 (3), 37001. pp. 1-3, Feb. 2019.
    [95] Takashi Ando et al., "A Simulation Study of Oxygen Vacancy-Induced Variability in HfO2/Metal Gated SOI FinFET," IEEE Electron Device Letters, vol.61, no. 5, pp. 1262-1269, May. 2014
    [96] Hyun Cho et al., "Al2O3/InGaZnO4 Heterojunction Band Offsets by X-Ray Photoelectron Spectroscop," Solid-State Letters, 14 (11), pp. H431-H433, Sep. 2011.

    無法下載圖示 校內:2024-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE