| 研究生: |
黃銀慶 Huynh, Ngan Khanh |
|---|---|
| 論文名稱: |
姬蝴蝶蘭磷酸鹽轉運蛋白之全基因組鑑定及其表現模式 Genome wide identification of Phosphate transporter I and their expression patterns in the Phalaenopsis equestris |
| 指導教授: |
蔡文杰
Tsai, Wen-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物與微生物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 外文關鍵詞: | Phosphate transporter I, Phalaenopsis equestris, Genome wide identification |
| 相關次數: | 點閱:138 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Orchidaceae is famous for its beautifully shaped flowers, unique ecological and reproductive adaptability and is one of the most distinct plant families. Here, the Phosphate Transporter I genes were identified from the genome sequence of tropical epiphytic orchid Phalaenopsis equestris, a common parental species for orchid breeding. An epiphyte is a kind of plant dependent on trees for structural support but not for nutritional support. By contrast, a terrestrial orchid just grows on land and does not need a host plant for surviving. Almost of orchids appear in tropical or subtropical regions of the world. In Arabidopsis thaliana, the high-affinity phosphate transporters are encoded by the PHT1 family. Plant growth and development require phosphorus (P) as an essential nutrient, accounting for about 0.2% of the dry weight. A great deal of biological macromolecules like nucleic acids, membrane lipids, and ATP are the significant components coming from phosphorus (P). The plants mainly take up phosphorus from the soil through the roots in the form of inorganic phosphate (Pi), including HPO4- and HPO42-.
Especially, the PHT1 is a membrane protein of a crucial facilitator family and the primary means of entry of Pi from the soil to the plants (Nussaume et al., 2011). The PHT1 transporters are also involved in Pi translocation as well as Pi remobilization in the aerial parts of the plants and play a vital role as transporters for phosphate import in plants. I performed spatial and temporal expression analysis by qRT-PCR, phylogenetic tree analysis, and predicted subcellular localization of PHT1 genes from P.equistris genome to understand the function of PHT1 in the orchid. To detect and characterize the PePHT1 genes (Peq019301, Peq003369, Peq021219, and Peq003368) expression patterns in orchid, qRT-PCR was performed in P.aphrodite subsp. formosana and seedlings growing in the low-phosphate medium and sufficient-phosphate medium. The result showed that the gene Peq021219 has the highest expression in the sepal compared to other parts of P. aphrodite subsp. formosana. Interestingly, the gene Peq021219 expression is higher than other genes in both sufficient and deficient medium. Peq021219 might have a major role responding to the phosphate and is the remarkable gene due to its highest expression in Phalaenopsis seedling.
Ai, P., Sun, S., Zhao, J., Fan, X., Xin, W., Guo, Q., et al. (2009). Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. The Plant Journal, 57(5), 798-809.
Bates, T. R., & Lynch, J. P. (1996). Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment, 19(5), 529-538.
Batchelor, S. R., & Fitch, C. (1996). Your first orchid a guide for beginners (No. 635.93415/B328).
Bieleski, R. L. (1973). Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology, 24(1), 225-252.
Bieleski, R. L., & Ferguson, I. B. (1983). Physiology and metabolism of phosphate and its compounds. In Inorganic Plant Nutrition (pp. 422-449). Springer, Berlin, Heidelberg.
Bun-Ya, M., Nishimura, M., Harashima, S., Oshima, Y. (1991). The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Molecular and Cellular Biology, 11(6), 3229-3238.
Cai, J., Liu, X., Vanneste, K., Proost, S., Tsai, W. C., Liu, K. W., et al. (2015). The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 47(1), 65-72.
Chen, A., Chen, X., Wang, H., Liao, D., Gu, M., Qu, H., et al. (2014). Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC Plant Biology, 14(1), 1-15.
Chen, Y. H., Tsai, Y. J., Huang, J. Z., & Chen, F. C. (2005). Transcription analysis of peloric mutants of Phalaenopsis orchids derived from tissue culture. Cell Research, 15(8), 639-657.
Chiou, T. J., Aung, K., Lin, S. I., Wu, C. C., Chiang, S. F., & Su, C. L. (2006). Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell, 18(2), 412-421.
Clarkson, D. T., & Lüttge, U. (1991). Mineral nutrition: inducible and repressible nutrient transport systems. In Progress in Botany (pp. 61-83). Springer, Berlin, Heidelberg.
Daram, P., Brunner, S., Persson, B. L., Amrhein, N., & Bucher, M. (1998). Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 206(2), 225-233.
Delhaize, E., & Randall, P. J. (1995). Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiology, 107(1), 207-213.
Gray, W. M., Del Pozo, J. C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., et al. (1999). Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes and Development, 13(13), 1678-1691.
Glassop, D., Smith, S. E., & Smith, F. W. (2005). Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta, 222(4), 688-698.
Hamburger, D., Rezzonico, E., MacDonald-Comber Petétot, J., Somerville, C., & Poirier, Y. (2002). Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. The Plant Cell, 14(4), 889-902.
Hermans, E. J., Putman, P., & Van Honk, J. (2006). Testosterone administration reduces empathetic behavior: A facial mimicry study. Psychoneuroendocrinology, 31(7), 859-866.
Karandashov, V., & Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10(1), 22-29.
Karthikeyan, A. S., Varadarajan, D. K., Mukatira, U. T., D'Urzo, M. P., Damsz, B., & Raghothama, K. G. (2002). Regulated expression of Arabidopsis phosphate transporters. Plant Physiology, 130(1), 221-233.
Lapis-Gaza, H. R., Jost, R., & Finnegan, P. M. (2014). Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1; 8 and PHT1; 9 are involved in root-to-shoot translocation of orthophosphate. BMC Plant Biology, 14(1), 1-19.
Leggewie, G., Willmitzer, L., & Riesmeier, J. W. (1997). Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. The Plant Cell, 9(3), 381-392.
Linkohr, B. I., Williamson, L. C., Fitter, A. H., & Leyser, H. O. (2002). Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. The Plant Journal, 29(6), 751-760.
Lin, S. I., Chiang, S. F., Lin, W. Y., Chen, J. W., Tseng, C. Y., Wu, P. C., & Chiou, T. J. (2008). Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology, 147(2), 732-746.
Liu, C., Muchhal, U. S., Uthappa, M., Kononowicz, A. K., & Raghothama, K. G. (1998). Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology, 116(1), 91-99.
Liu, H., Trieu, A. T., Blaylock, L. A., & Harrison, M. J. (1998). Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant-Microbe Interactions, 11(1), 14-22.
Liu, F., Chang, X. J., Ye, Y., Xie, W. B., Wu, P., & Lian, X. M. (2011). Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice. Molecular Plant, 4(6), 1105-1122.
Liu, J., Uhde-Stone, C., Li, A., Vance, C., & Allan, D. (2001). A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.). Plant and Soil, 237(2), 257-266.
Liu, F., Xu, Y., Jiang, H., Jiang, C., Du, Y., Gong, C., et al. (2016). Systematic identification, evolution and expression analysis of the Zea mays PHT1 gene family reveals several new members involved in root colonization by arbuscular mycorrhizal fungi. International Journal of Molecular Sciences, 17(6), 930.
López-Arredondo, D. L., Leyva-González, M. A., González-Morales, S. I., López-Bucio, J., & Herrera-Estrella, L. (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 65, 95-123.
Marschner, H. (Ed.). (2011). Marschner's mineral nutrition of higher plants. Academic Press.
Misson, J., Thibaud, M. C., Bechtold, N., Raghothama, K., & Nussaume, L. (2004). Transcriptional regulation and functional properties of Arabidopsis Pht1; 4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology, 55(5), 727-741.
Mimura, T. (1999). Regulation of phosphate transport and homeostasis in plant cells. In International Review of Cytology (Vol. 191, pp. 149-200). Academic Press.
Mudge, S. R., Rae, A. L., Diatloff, E., & Smith, F. W. (2002). Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal, 31(3), 341-353.
Muchhal, U. S., Pardo, J. M., & Raghothama, K. G. (1996). Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 93(19), 10519-10523.
Nagarajan, V. K., Jain, A., Poling, M. D., Lewis, A. J., Raghothama, K. G., & Smith, A. P. (2011). Arabidopsis Pht1; 5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiology, 156(3), 1149-1163.
Nussaume, L., Kanno, S., Javot, H., Marin, E., Nakanishi, T. M., & Thibaud, M. C. (2011). Phosphate import in plants: focus on the PHT1 transporters. Frontiers in Plant Science, 2, 83.
Pao, S. S., Paulsen, I. T., & Saier Jr, M. H. (1998). Major facilitator superfamily. Microbiology and molecular biology reviews, 62(1), 1-34.
Péret, B., Clément, M., Nussaume, L., & Desnos, T. (2011). Root developmental adaptation to phosphate starvation: better safe than sorry. Trends in Plant Science, 16(8), 442-450.
Poirier, Y., Thoma, S., Somerville, C., & Schiefelbein, J. (1991). Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology, 97(3), 1087-1093.
Raghothama, K. G. (1999). Phosphate acquisition. Annual Review of Plant Biology, 50(1), 665-693.
Rausch, C., Zimmermann, P., Amrhein, N., & Bucher, M. (2004). Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2; 1 in auto‐and heterotrophic tissues in potato and Arabidopsis. The Plant Journal, 39(1), 13-28.
Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., et al. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 414(6862), 462-465.
Sawers, R. J., Svane, S. F., Quan, C., Grønlund, M., Wozniak, B., Gebreselassie, M. N., et al. (2017). Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root‐external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 214(2), 632-643.
Sánchez-Calderón, L., López-Bucio, J., Chacón-López, A., Cruz-Ramírez, A., Nieto-Jacobo, F., Dubrovsky, J. G., & Herrera-Estrella, L. (2005). Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant and Cell Physiology, 46(1), 174-184.
Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116(2), 447-453
Smith, F. W., Cybinski, D. H., & Rae, A. L. (1999). Regulation of expression of genes encoding phosphate transporters in barley roots. In Plant Nutrition—Molecular Biology and Genetics (pp. 145-150). Springer, Dordrecht.
Smith, F. W., Ealing, P. M., Dong, B., & Delhaize, E. (1997). The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal, 11(1), 83-92.
Tsai, W. C., Kuoh, C. S., Chuang, M. H., Chen, W. H., & Chen, H. H. (2004). Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant and Cell Physiology, 45(7), 831-844.
Javot, H., Penmetsa, R. V., Terzaghi, N., Cook, D. R., & Harrison, M. J. (2007). A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 104(5), 1720-1725.
Versaw, W. K., & Harrison, M. J. (2002). A chloroplast phosphate transporter, PHT2; 1, influences allocation of phosphate within the plant and phosphate-starvation responses. The Plant Cell, 14(8), 1751-1766.
Yang, F. X., Gao, J., Wei, Y. L., Ren, R., Zhang, G. Q., Lu, C. Q., et al. (2021). The genome of Cymbidium sinense revealed the evolution of orchid traits. Plant Biotechnology Journal, 19(12), 2501.
Ye, Y., Yuan, J., Chang, X., Yang, M., Zhang, L., Lu, K., & Lian, X. (2015). The phosphate transporter gene OsPht1; 4 is involved in phosphate homeostasis in rice. PLoS One, 10(5), e0126186.
Wang, J., Yang, Y., Liao, L., Xu, J., Liang, X., & Liu, W. (2019). Genome-wide identification and functional characterization of the phosphate transporter gene family in Sorghum. Biomolecules, 9(11), 670.
Wang, Y. T., & Konow, E. A. (2002). Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. Journal of the American Society for Horticultural Science, 127(3), 442-447.
Wang, H., Xu, Q., Kong, Y. H., Chen, Y., Duan, J. Y., Wu, W. H., & Chen, Y. F. (2014). Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1; 1 expression in response to phosphate starvation. Plant Physiology, 164(4), 2020-2029.
Welch, R. M. (1982). Zinc in membrane function and its role in phosphorous toxicity. In 9th Conf. Common weath Agricultural Bureau, Colloquium, Warwick, England, 1982 (pp. 710-715).
Williamson, L. C., Ribrioux, S. P., Fitter, A. H., & Leyser, H. O. (2001). Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126(2), 875-882.
Zhao, X., Zhang, J., Chen, C., Yang, J., Zhu, H., Liu, M., & Lv, F. (2014). Deep sequencing–based comparative transcriptional profiles of Cymbidium hybridum roots in response to mycorrhizal and non-mycorrhizal beneficial fungi. BMC Genomics, 15(1), 1-22.
Zhang, G. Q., Xu, Q., Bian, C., Tsai, W. C., Yeh, C. M., Liu, K. W., et al. (2016). The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific Reports, 6(1), 1-10.
校內:2027-01-10公開