簡易檢索 / 詳目顯示

研究生: 周冠宇
Chou, Kuan-Yu
論文名稱: 髓腔固位冠之多因子生物力學分析
Multi-factorial biomechanical analysis of endocrowns
指導教授: 莊淑芬
Chuang, Shu-Fen
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 83
中文關鍵詞: 髓腔固位冠壓縮穹頂概念光學同調斷層掃描數位影像相關法掃描式電子顯微鏡
外文關鍵詞: endocrowns , compression dome concept, optical coherence tomography, digital image correlation , scanning electron microscopy
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 髓腔固位冠已成為根管治療後臼齒復形的可靠替代方案,然而,其邊緣設計至今尚無統一標準可循。根據壓縮穹頂概念(compression dome concept),當復形體邊緣位於轉折平面(inflection plane)之下時,可能承受張應力,導致黏著界面產生滲漏(leakage)。本研究旨在探討髓腔固位冠不同邊緣設計對應壓縮穹頂觀念之應力分佈,對其受力時的生物力學表現與黏著界面滲漏程度的影響。本研究採用光學同調斷層掃描(optical coherence tomography, OCT)、數位影像相關法(digital image correlation, DIC)與掃描式電子顯微鏡(scanning electron microscope, SEM)進行分析。
    本實驗使用32顆人類下顎大臼齒,所有樣本均完成根管治療,並嵌入圓柱形環氧樹脂中。根據髓腔固位冠邊緣與轉折平面關係位置及型態分為四組:1. AF組:邊緣位於轉折平面上方,採環箍設計(ferrule margin);2. AB組:邊緣位於轉折平面上方,採對接設計(butt joint margin);3. BF組:邊緣位於轉折平面下方,採環箍設計;4. BB組:邊緣位於轉折平面下方,採對接設計。髓腔固位冠以二矽酸鋰陶瓷(IPS e.max CAD HT A2)製作,並以樹脂黏著劑黏著,儲存於37°C蒸餾水中24小時後,進行OCT掃描黏著界面,並以SEM觀察邊緣完整性。之後樣本以 15°舌側傾斜方式固定於萬能測試機上,於頰側施加300 N負載同時拍攝影像,並應用DIC方法分析應變。再經10,000次、300 N動態受力測試後,再次進行OCT、SEM與DIC觀察,最終以 1 mm/min 速率加載至斷裂,記錄其斷裂強度與模式。
    OCT結果顯示,受力前AF與AB組的黏著界面滲漏顯著高於BF與BB組;但就邊緣設計(ferrule與butt joint)則未有顯著差異。受力後,各組滲漏皆增加,且AF與AB組仍高於BF與BB組,但BF組頰側面受力後滲漏增加最為顯著。SEM的邊緣分析方面,受力前BF與BB組表現優於AF與AB組;受力後則以BF組破壞最為明顯。應變觀察結果顯示,轉折平面上主要為壓力應變區,張力應變主要在舌側齒頸部,符合壓縮穹頂模型。各組分析顯示,AF與AB組邊緣以壓力應變為主,而BF與BB組邊緣僅頰側20%為壓力應變區,其餘為張力應變(正值)。邊緣設計則無顯著影響。受力前後比較顯示,AF與AB組壓應變值於受力後下降,BF與BB組則無顯著變化。斷裂測試結果顯示,BF與BB組的斷裂強度顯著高於AF與AB組,而邊緣設計亦無統計差異。所有組別斷裂模式多為可修復性斷裂,且無顯著差異。
    綜合分析結果,髓腔固位冠邊緣與轉折平面之相對位置對修復體的生物力學行為與邊緣穩定性具重要影響。當邊緣位於轉折平面之上(AF與AB組),因處於壓力應變區,受力後黏著介面與邊緣破壞較少;但由於復形體厚度較薄,斷裂強度亦較低。相對地,BF組受力後介面與邊緣破壞較高,但BB組之張力應變破壞較小。整體而言,本研究結果顯示髓腔固位冠生物力學表現,也驗證壓縮穹頂觀念與邊緣設計之相關性,可協助臨床醫師依據剩餘齒質狀況,選擇最合適的修復策略以提升療效與長期預後。

    Endocrowns have become a reliable alternative for the restoration of endodontically treated molars; however, their margin design lacks consistent standard. According to the compression dome concept, margins located below the inflection plane may be subjected to tensile stress, potentially leading to interfacial leakage. This study aimed to investigate the influence of margin designs on the biomechanical behaviors and interfacial debonding of endocrowns after dynamic loading, using optical coherence tomography (OCT), digital image correlation (DIC), and scanning electron microscopy (SEM).
    Thirty-two human mandibular molars received root canal treatment and were embedded in cylinder epoxy resin. They were divided into four groups to receive endocrowns of different types and locations of margin design: (1) AF: above the inflection plane, ferrule margin; (2) AB: above the inflection plane, butt joint margin; (3) BF: below the inflection plane, ferrule margin; (4) BB: below the inflection plane, butt joint margin. Endocrowns were fabricated from lithium disilicate ceramic (IPS e.max CAD HT A2) and cemented with resin cement. After 24-hour storage in 37°C distilled water, pre-loading analyses of interfacial debonding and marginal integrity were performed using OCT and SEM, respectively. Strain field pattens were analyzed using DIC under a 300 N static loading on the buccal cusp at a 15-degree lingual tilting. Subsequently, specimens underwent 10,000 cycles of dynamic loading (300 N), followed by a load test (300 N, 1 mm/min) to examine the failure loads and modes.
    Before loading, interfacial debonding in Groups AF and AB was significantly higher than in Groups BF and BB. There was no significant difference between the ferrule and butt joint designs. After loading, leakage increased in all groups. The most significant increased leakage occurred in the buccal sides of Group BF. Regarding marginal integrity, Groups BF and BB showed good sealing before loading, whereas Group BF showed significantly increased decay after loading. The DIC analysis confirmed strain distributions consistent with the compression dome model, with a compressive zone above the inflection plane and a tensile zone at the contralateral cervical area. Quantitatively, AF and AB margins were primarily under compression (negative strain), while BF and BB margins were mostly under tension (positive strain). No significant effects from margin designs were observed. Strain values in Groups AF and AB significantly decreased after loading. The failure load of Groups BF and BB was significantly higher than that of Groups AF and AB, with no statistical difference between margin designs. All groups showed restorable failures after the fracture tests.
    The location of the endocrown margin relative to the inflection plane significantly impacts the biomechanical behavior and interfacial bonding of the restoration. Coronally placed margins in AF and AB exhibited less debonding due to their sustained compression. However, they showed lower fracture strength due to reduced restoration thickness. Conversely, margins placed apically in BF and BB are at a greater risk of marginal degradation under functional loading. Group BB showed less adverse effects of tensile strain. Overall, these findings reveal the biomechanical behaviors of endocrowns and validate the role of the compression dome concept. This study may provide evidence for selecting optimal restorative strategies to improve clinical outcomes and long-term prognosis.

    中文摘要 I Abstract IV 誌謝 VII Content VIII List of tables XI List of figures XII Chapter 1 Introduction 1 1.1. Endodontically treated teeth 2 1.1.1. Fracture risk of endodontically treated teeth 2 1.1.2. Restorative strategies for endodontically treated teeth 4 1.2. Endocrowns 5 1.2.1. Materials for endocrowns 7 1.2.2. Endocrown preparation 8 1.3. Compression dome concept 10 1.4. Motivation and objectives 14 Chapter 2 Materials & Methods 15 2.1. Tooth preparation 15 2.2. Endocrowns preparation and fabrication 19 2.3. Cementation of endocrowns 23 2.4. OCT observation for interfacial debonding 28 2.5. SEM for marginal integrity 31 2.5.1. Replica Fabrication 31 2.5.2. SEM Observation of Replicas 32 2.6. DIC for strain field analysis 34 2.6.1. Initial static loading 34 2.6.2. Dynamic loading test 35 2.6.3. Second static loading test 36 2.7. Failure test 36 2.7.1. Fracture Resistance Test 36 2.7.2. Failure Mode Analysis 36 2.8. Data analysis 38 Chapter 3 Results 40 3.1. Interfacial Leakage 40 3.1.1. Initial interfacial debonding 40 3.1.2. Second interfacial debonding 41 3.1.3. Increase in interfacial debonding after dynamic loading 43 3.2. Marginal Integrity 44 3.2.1. Marginal integrity of first observation 44 3.2.2. Marginal Integrity of second observation 45 3.3. Strain field analysis 47 3.3.1. Initial strain analysis 47 3.3.2. 2nd strain analysis 49 3.4. Failure load and failure mode 51 3.4.1. Failure Load 51 3.4.2. Failure Mode 52 Chapter 4 Discussion 55 Chapter 5 Conclusion 62 References 63

    1. Patel, S.R., C. Youngson, and F. Jarad, Principles guiding the restoration of the root-filled tooth. Br Dent J, 2025. 238(7): p. 508-516.
    2. Fransson, H. and V. Dawson, Tooth survival after endodontic treatment. Int Endod J, 2023. 56 Suppl 2: p. 140-153.
    3. Kishen, A., Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endodontic topics, 2006. 13(1): p. 57-83.
    4. Selvaraj, H., et al., Systematic review fracture resistance of endodontically treated posterior teeth restored with fiber reinforced composites- a systematic review. BMC Oral Health, 2023. 23(1): p. 566.
    5. Tang, W., Y. Wu, and R.J. Smales, Identifying and reducing risks for potential fractures in endodontically treated teeth. J Endod, 2010. 36(4): p. 609-17.
    6. Fuss, Z., J. Lustig, and A. Tamse, Prevalence of vertical root fractures in extracted endodontically treated teeth. Int Endod J, 1999. 32(4): p. 283-6.
    7. Touré, B., et al., Analysis of reasons for extraction of endodontically treated teeth: a prospective study. J Endod, 2011. 37(11): p. 1512-5.
    8. Yoshino, K., et al., Prevalence of vertical root fracture as the reason for tooth extraction in dental clinics. Clin Oral Investig, 2015. 19(6): p. 1405-9.
    9. Sugaya, T., et al., Comparison of fracture sites and post lengths in longitudinal root fractures. J Endod, 2015. 41(2): p. 159-63.
    10. Liao, W.C., et al., Clinical and Radiographic Characteristics of Vertical Root Fractures in Endodontically and Nonendodontically Treated Teeth. J Endod, 2017. 43(5): p. 687-693.
    11. Helfer, A.R., S. Melnick, and H. Schilder, Determination of the moisture content of vital and pulpless teeth. Oral Surg Oral Med Oral Pathol, 1972. 34(4): p. 661-70.
    12. Papa, J., C. Cain, and H.H. Messer, Moisture content of vital vs endodontically treated teeth. Endod Dent Traumatol, 1994. 10(2): p. 91-3.
    13. Caussin, E., et al., Advanced Material Strategy for Restoring Damaged Endodontically Treated Teeth: A Comprehensive Review. Materials (Basel), 2024. 17(15).
    14. Reeh, E.S., H.H. Messer, and W.H. Douglas, Reduction in tooth stiffness as a result of endodontic and restorative procedures. J Endod, 1989. 15(11): p. 512-6.
    15. AlDabeeb, D.S., et al., Endocrowns: Indications, Preparation Techniques, and Material Selection. Cureus, 2023. 15(12): p. e49947.
    16. Zogheib, L.V., et al., Resistance to compression of weakened roots subjected to different root reconstruction protocols. J Appl Oral Sci, 2011. 19(6): p. 648-54.
    17. Dejak, B. and A. Młotkowski, 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater, 2013. 29(12): p. e309-17.
    18. Belleflamme, M.M., et al., No post-no core approach to restore severely damaged posterior teeth: An up to 10-year retrospective study of documented endocrown cases. J Dent, 2017. 63: p. 1-7.
    19. Pissis, P., Fabrication of a metal-free ceramic restoration utilizing the monobloc technique. Pract Periodontics Aesthet Dent, 1995. 7(5): p. 83-94.
    20. Bindl, A. and W.H. Mörmann, Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years--preliminary results. J Adhes Dent, 1999. 1(3): p. 255-65.
    21. Sevimli, G., S. Cengiz, and M.S. Oruc, Endocrowns: review. J Istanb Univ Fac Dent, 2015. 49(2): p. 57-63.
    22. Bernhart, J., et al., Cerec3D endocrowns--two-year clinical examination of CAD/CAM crowns for restoring endodontically treated molars. Int J Comput Dent, 2010. 13(2): p. 141-54.
    23. Biacchi, G.R., B. Mello, and R.T. Basting, The endocrown: an alternative approach for restoring extensively damaged molars. J Esthet Restor Dent, 2013. 25(6): p. 383-90.
    24. Gresnigt, M.M., et al., Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater, 2016. 32(5): p. 607-14.
    25. Sağlam, G., S. Cengiz, and Ö. Karacaer, Marginal adaptation and fracture strength of endocrowns manufactured with different restorative materials: SEM and mechanical evaluation. Microsc Res Tech, 2021. 84(2): p. 284-290.
    26. Mainjot, A.K., et al., From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J Dent Res, 2016. 95(5): p. 487-95.
    27. Mainjot, A., Recent advances in composite CAD/CAM blocks. Int J Esthet Dent, 2016. 11(2): p. 275-80.
    28. Nguyen, J.F., et al., Resin composite blocks via high-pressure high-temperature polymerization. Dent Mater, 2012. 28(5): p. 529-34.
    29. Ciobanu, P., et al., Endocrowns - a literature review. Med Pharm Rep, 2023. 96(4): p. 358-367.
    30. Turkistani, A.A., M. Dimashkieh, and M. Rayyan, Fracture resistance of teeth restored with endocrowns: An in vitro study. J Esthet Restor Dent, 2020. 32(4): p. 389-394.
    31. Taha, D., et al., Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness. J Prosthodont Res, 2018. 62(3): p. 293-297.
    32. Hayes, A., et al., Effect of Endocrown Pulp Chamber Extension Depth on Molar Fracture Resistance. Oper Dent, 2017. 42(3): p. 327-334.
    33. Tsai, Y.L., et al., Influence of glass-ceramic thickness on Hertzian and bulk fracture mechanisms. Int J Prosthodont, 1998. 11(1): p. 27-32.
    34. Mörmann, W.H., et al., Effects of preparation and luting system on all-ceramic computer-generated crowns. Int J Prosthodont, 1998. 11(4): p. 333-9.
    35. Chang, C.-Y., et al., Fracture resistance and failure modes of CEREC endo-crowns and conventional post and core-supported CEREC crowns. Journal of Dental Sciences, 2009. 4(3): p. 110-117.
    36. Haralur, S.B., et al., Effect of different preparation designs and all ceramic materials on fracture strength of molar endocrowns. J Appl Biomater Funct Mater, 2020. 18: p. 2280800020947329.
    37. Pedrollo Lise, D., et al., Biomechanical behavior of endodontically treated premolars using different preparation designs and CAD/CAM materials. J Dent, 2017. 59: p. 54-61.
    38. Rocca, G.T., et al., Restoration of severely damaged endodontically treated premolars: The influence of the endo-core length on marginal integrity and fatigue resistance of lithium disilicate CAD-CAM ceramic endocrowns. J Dent, 2018. 68: p. 41-50.
    39. Govare, N. and M. Contrepois, Endocrowns: A systematic review. J Prosthet Dent, 2020. 123(3): p. 411-418.e9.
    40. Dartora, N.R., et al., Effect of Intracoronal Depth of Teeth Restored with Endocrowns on Fracture Resistance: In Vitro and 3-dimensional Finite Element Analysis. J Endod, 2018. 44(7): p. 1179-1185.
    41. Sedrez-Porto, J.A., et al., Endocrown restorations: A systematic review and meta-analysis. J Dent, 2016. 52: p. 8-14.
    42. AL-Zomur, S., M. Abo-Madina, and M. Hassouna, Influence of different marginal preparation designs and materials on the marginal integrity and internal adaptation of endocrown restorations. Egyptian Dental Journal, 2021. 67(4): p. 3491-3500.
    43. Einhorn, M., et al., Preparation Ferrule Design Effect on Endocrown Failure Resistance. J Prosthodont, 2019. 28(1): p. e237-e242.
    44. Zheng, Z., et al., Influence of margin design and restorative material on the stress distribution of endocrowns: a 3D finite element analysis. BMC Oral Health, 2022. 22(1): p. 30.
    45. Milicich, G. and J.T. Rainey, Clinical presentations of stress distribution in teeth and the significance in operative dentistry. Pract Periodontics Aesthet Dent, 2000. 12(7): p. 695-700; quiz 702.
    46. Wang, R.Z. and S. Weiner, Strain-structure relations in human teeth using Moiré fringes. J Biomech, 1998. 31(2): p. 135-41.
    47. Goldberg, M., et al., The dentino-enamel junction revisited. Connect Tissue Res, 2002. 43(2-3): p. 482-9.
    48. Baruah, S., et al., The Advent of the Compression Dome Concept. 2020.
    49. Milicich, G., The compression dome concept: the restorative implications. Gen Dent, 2017. 65(5): p. 55-60.
    50. van Lierop, J., Influence of variations in ceramic thickness and bonding substrate on the fracture resistance of lithium disilicate restorations. 2017.
    51. Lawn, B.R. and J.J. Lee, Analysis of fracture and deformation modes in teeth subjected to occlusal loading. Acta Biomater, 2009. 5(6): p. 2213-21.
    52. Edelhoff, D. and J.A. Sorensen, Tooth structure removal associated with various preparation designs for anterior teeth. J Prosthet Dent, 2002. 87(5): p. 503-9.
    53. Magne, P. and U.C. Belser, Porcelain versus composite inlays/onlays: effects of mechanical loads on stress distribution, adhesion, and crown flexure. Int J Periodontics Restorative Dent, 2003. 23(6): p. 543-55.
    54. St-Georges, A.J., et al., Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent, 2003. 89(6): p. 551-7.
    55. Ritter, A.V., L.W. Boushell, and R. Walter, Sturdevant's Art and Science of Operative Dentistry. 2018.
    56. Collares, K., et al., A practice-based research network on the survival of ceramic inlay/onlay restorations. Dent Mater, 2016. 32(5): p. 687-94.
    57. Thorlabs Inc., TELESTO II Spectral Domain OCT System Operating Manual 2013, Thorlabs, Inc. : Newton, NJ
    58. Rocca, G.T., et al., Evidence-based concepts and procedures for bonded inlays and onlays. Part II. Guidelines for cavity preparation and restoration fabrication. Int J Esthet Dent, 2015. 10(3): p. 392-413.
    59. Abo-Elmagd, A. and M. Abdel-Aziz, Influence of marginal preparation design on microleakage and marginal gap of endocrown cemented with adhesive resin cement. Egypt Dent. J, 2015. 61: p. 5481-5489.
    60. Mostafavi, A.S., et al., Effect of Preparation Design on Marginal Integrity and Fracture Resistance of Endocrowns: A Systematic Review. Front Dent, 2022. 19: p. 37.
    61. Tribst, J.P., et al., The impact of restorative material and ceramic thickness on CAD\CAM endocrowns. J Clin Exp Dent, 2019. 11(11): p. e969-e977.
    62. Alamin, A.M., A.A. Sakrana, and W. Al-Zordk, Impact of marginal preparation design on the fracture resistance of endo-crown all-ceramic. IOSR J Dent Med Sci, 2019. 18: p. 11-7.
    63. Zaky, M.M., N.A. Fayed, and M.F. Shehab, Comparison of biting force when using a combination of one microplate and one miniplate versus two miniplates for fixation of parasymphyseal mandibular fracture: the use of microplates for parasymphyseal mandibular fracture. Oral Maxillofac Surg, 2020. 24(1): p. 19-24.
    64. Kshirsagar, R., N. Jaggi, and R. Halli, Bite force measurement in mandibular parasymphyseal fractures: a preliminary clinical study. Craniomaxillofac Trauma Reconstr, 2011. 4(4): p. 241-4.

    無法下載圖示 校內:2030-08-18公開
    校外:2030-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE