簡易檢索 / 詳目顯示

研究生: 徐子圭
Hsu, Uzu-Kuei
論文名稱: 斜開機械心瓣在脈動流中之動態數值模擬
Dynamic Simulation of Tilting-Disc Mechanical Heart Valve in Pulsatile Flow
指導教授: 戴昌賢
Tai, Chang-Hsien
陸鵬舉
Lu, Pong Jeu
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 113
中文關鍵詞: 計算流力不可壓縮流動態網格固液耦合脈動流機械心瓣
外文關鍵詞: CFD, Pulsatile Flow, Dynamic grid, Fluid-structure interaction, MHV, Inconpressible flow
相關次數: 點閱:152下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要發展一套程式系統以求解動態二維斜開瓣於脈動流中之流-固完整耦合問題。仔細驗證脈動血流誘使心瓣運動之非定常特性,以現有之計算流力學(CFD)算則發展求解此一問題之系統模組,應用不可壓縮流之有限體積法求解守恆型式下之Navier-Stokes方程式。為了闡述非停滯狀況下之瓣膜運動,使用結構-非結構耦合格點法(hybrid grid)於每一時間疊代下建構更新網格,並利用單自由度之瓣膜旋轉運動副程式於計算流力算則求解每一時間步階過程中加以耦合計算,同時於每一步階網格運動下嚴格要求符合幾何守恆律(GCL/geometrical conservation law)以免不正確之結果產生。
    研究結果顯示,在瓣膜兩側均存在強健之逸放渦流發生,並且一直持續至關閥,這些閉閥渦流(closure vortices)對逆流特性形成強烈之擾動,並且影響後續之開閥流場特性。研究同時應用應力與時間關係之血液損傷指標經驗方程式,結合Lagrangian粒子追踪法去分析流場應力對血球之傷害性。根據本研究所發展出的流-固耦合算則系統分析結果可知,過去文獻以暫態穩定方式去求解不同時序之開閥動態流場象現,其所分析之問題為簡化流場假設,故可能會得到錯誤的結果。

    In this study, a fully-coupled two-dimensional fluid-structure interaction software system for a pulsatile flow across a moving tilting-disc valve is developed. Unsteady transvalvular blood flow coupled with induced occluder motion has been examined in details. State-of-the-art computational fluid dynamics (CFD) methods are adopted in the present flow solver development. Incompressible finite-volume method is employed to solve the Reynolds-averaged Navier-Stokes equations in conservation form. To account for nonstationary occluder motion, the meshes surrounding the occluder are generated and updated in each time-marching step using hybrid structure/unstructured grid method. A single-degree-of-freedom rotational occluder model is integrated simultaneously with the CFD time-stepping. The geometrical conservation law is strictly satisfied so as to avoid spurious results generated. It is found in the present study that, on both side of the occluder, strong shedding vortices occur and persist in the valve closing phase. These closure vortices show great influence on the prediction of the regurgitant flow characteristics and the subsequent valve opening dynamics as well. Blood cell damage index developed based on stress-time empirical rule and Lagrangian particle tracking is also introduced to assess the viscous and turbulence-induced stresses effect to the blood cells. Based on the presently developed fluid/structure interaction code, the results obtained from quasi-steady simulations performed at various instants of interest with prescribed occluder motion are critically evaluated to assess whether simplified flow and occluder conditions may lead to erroneous conclusions.

    摘要 I ABSTRACT VIII CONTENTS X LIST OF TABLES XII LIST OF FIGURES XIII NOMENCLATURE XVIII CHAPTER I INTRODUCTION 1 1.1. HISTORY AND ADVANCES OF ARTIFICIAL HEART VALVES 1 1.2. LECTURE REVIEW IN CFD 4 1.3. RESEARCH OBJECT 6 CHAPTER II BIOMECHANICS OF MHV 7 2.1. THE CONCEPT OF A MHV DESIGN 7 2.2. PERFORMANCE EVALUATION OF THE MECHANICAL HEART VALVE 11 CHAPTER III MATHEMATICAL MODELING 15 3.1. DYNAMIC MESH CONSERVATION EQUATIONS 15 3.2. STRUCTURE DYNAMIC EQUATION 16 3.3. DYNAMIC MESH UPDATE METHOD 18 3.4. TURBULENT MODEL 20 3.5. NUMERICAL METHOD 21 3.6. HEMOLYSIS INDEX, HI 22 CHAPER IV HEMODYNAMIC ANALYSIS OF GENERIC FLAT-PLATE OCCLUDER FLOW UNDER FULLY-COUPLED FLUID/STRUCTURE INTERACTIONS 25 4.1. INTRODUCTION 25 4.2. SCHEME VALIDATION 27 4.3. NUMERICAL MODEL 30 4.4. PULSATILE VALVE FLOW AND OCCLUDER MOTION 32 4.5. DIFFERENCES BETWEEN QUASI-STEADY AND FLUID/STRUCTURE INTERACTED UNSTEADY SIMULATIONS 37 4.6. REGURGITANT FLOW 41 4.7. BLOOD CELL DAMAGE EVALUATION 43 4.8. SINUS EFFECT 45 CHAPTER V CONCLUDING REMARKS 47 6.1. CONCLUSION 47 6.2. FUTURE WORK 48 REFERENCES 50 PUBLICATION LIST 111 VITA 113

    1. Yoganathan AP, He Z, Jones SC, “Fluid Mechanics of Heart Valve,” Annu. Rev. Biomed. Eng., Vol.6, pp.331-362, 2004.
    2. Robert WC, “Choosing a Substitute Cardiac Valve; Type, Size, Surgeon,” Am. J. Cardiac, Vol.38, pp.633-644, 1976.
    3. Jamieson WR, “Current and Advanced Prostheses for cardiac valvular Replacement and Reconstruction Surgery,” Surg. Technol. Int., Vol.10, pp212-149, 2002.
    4. Vongpatanasin W, Hills LD, and Lange RA, “Prosthetic Heart Valves,” N. Engl. J. Med., Vol.335, No.6, pp. 407-416, 1996.
    5. GurnKemeier GL, Rahimtoola SH, “Artificial Heart Valves,” Annu. Rev. Med., Vol.41, pp. 251-263, 1990.
    6. Cannegieter, SC, Rosendaal, FR, Briet, E, “Thromboembolic and Bleeding Complications in Patients with Mechanical Heart Valve Prostheses.” Circulation, Vol.89, No.2, pp. 635-641, 1994.
    7. Edmunds Jr. LH, “Thrombotic and Bleeding Complications of Prosthetic: Heart Valves,” Ann. Thorac. Surg., Vol.44, pp. 430-445, 1987.
    8. Rosenfeld M, Avrahami I, Einav S, “Unsteady Effect on the Flow Across Tilting Valve,” J. Biomech. Eng., Vol.124, pp.21-29, 2002.
    9. Hung TK, Schuessler GB, “Computational Analysis as an Aid to the Design of Heart Valves,” Chem. Eng. Prog. Symp. Ser., Vol.67, pp.8-17, 1971.
    10. Au AD, Greenfield HS, “Computer Graphics Analysis of Stresses in Blood Flow Through a Prosthetic Heart Valve,” Comput. Biol. Med., Vol.4, pp.279-291, 1975.
    11. Peskin CS, “Flow Patterns Around Heart Valves: a Numerical Method,” J. Comput. Phys., Vol.10, pp.252-271, 1972.
    12. de Hart J, Peters GWM, Schreurs PJG, Baaijens FPT, “A Two-dimensional Fluid-structure Interaction Model of the Aortic Value,”J. Biomech., Vol.33, pp.1079-1088, 2000.
    13. Peskin CS, McQueen DM, “Modeling Prosthetic Heart Valves for Numerical Analysis of Blood Flow Through the Heart,” J. Comput. Phys., Vol.37, pp.113-132, 1980.
    14. Vinokur M, “An Analysis of Finite-Difference and Finite-Volume Formulations of Conservation Laws,” Journal of Computational Physics, Vol. 81, pp.1-52,1989.
    15. Ellis JT, Travis BR, Yoganathan AP, “An In-vitro Study of the Hinge and Near-field Forward Flow Dynamics of the St. Jude Medical Regent Bileaflet Mechanical Heart Valve,” Ann. Biomed. Eng., Vol.28, pp. 524-532, 2000.
    16. Lee CS, Aluri S, Chandran KB, “Effect of Valve Holder Flexibility on Cavitation. Initiation with Mechanical Heart Valve Prostheses: An In-vitro Study,” J. Heart Valve Dis., Vol.5, pp. 104-113, 1996.
    17. Bluestein D, Einav S, Hwang NHC, “A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis,” J. Biomech., Vol. 27, pp. 1369-1378, 1994.
    18. Ge L, Jones SC., Sotiropoulos F, Healy TM, Yoganathan AP, “Numerical Simulation of Flow in Mechanical Heart Valves: Grid Resolution and the Assumption of Flow Symmetry,” J. Biomech. Eng., Vol.125, pp. 709-718, 2003.
    19. Yin W, Alemu Y, Affeld K, Jesfy J, Bluestein D, “Flow-induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves,” Ann. Biomed. Eng., Vol.32, pp. 1058-1066, 2004.
    20. Cheon GJ, Chandran KB, “Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses in the Opening Phase,” J. Biomech. Eng., Vol.115, pp. 389-395, 1993.
    21. Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM, “Flow Visualization in Mechanical Heart Valves: Occluder Rebound and Cavitation Potential,” Ann. Biomed. Eng., Vol.28, pp. 431-441, 2000.
    22. Bluestein D, Rambod E, Gharib M, “Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves,” Jornal of Biomechanical Engineering, Vol.122, pp. 125-134, 2000.
    23. Hiratzke LF, Kouchoukos NT, Grunkemeier GL, Miller DC, Scully HE, Wechlser AS, “Outlet Strut Fracture of the Bjork-Shiley 60˚ Convexo-concave Valve: Current Information and Recommendations for Patient Care,” J. Am. Coll., Cardiol., Vol.2, pp.1130-1137, 1988.
    24. Odell TA, Durandt J, Shama DM, Vythilingum S, “Spontaneous Embolization of a St. Jude Prosthetic Mitral Valve Leaflet,” Ann. Thorac. Surg., Vol.39, pp. 569-572, 1985.
    25. Mikhail AA, Ellis R, Johnson S, “Eighteen-Year Evolution from the Lillehei-Kaster Valve to the Omni Design,” Ann. Thorac. Surg., Vol.48, pp. 561-564, 1989.
    26. Lillehei CW, Nakib A, Kaster RL, Kalke BR, Rees JR, “The Origin and Development of Three New Mechanical Valve Designs: Thoroidal Disc, Pivoting Disc, and Rigid Bileaflet Cardiac Prostheses,” Ann. Thorac. Surg., Vol.48, pp. 535-537, 1989.
    27. Bluestein D, Li YM, Krukenkamp IB, “Free Emboli Formation in the Wake of Bi-leaflet Mechanical Heart Valves and the Effects of Implantation Techniques,” J. Biomech., Vol.35, pp. 1533-1540, 2002.
    28. Sarnoff S, Braunwald E, Welch GH, et al., “Homodynamic Determinates of Oxygen Consumption of the Heart with Special Reference to the Tension-time Index,” Am. J. Physiol., Vol.192, pp.141-147, 1958.
    29. Yoganathan AP, Chaux A, Gray R, Woo YR, DeRobertis M, et al., “Bileaflet, tilting disc and porcine aortic valve substitutes: in vitro hydrodynamic characteristics,” J. Am. Coll. Cardiol., Vol.3, pp.313–320, 1984.
    30. Baldwin JT, Deutsch S, Geselowitz DB, Tarbell JM, “Estimation of Reynolds Stress within the Penn State Left Ventricular Assist Device,” ASAIO J., 36, pp. M274-M278, 1990.
    31. Paul R, Apel J, Klaus S, Schügner F, Schwindke P, and Reul H, “Shear Stress Related Blood Damage in Laminar Couette Flow,” Artificial Organs, Vol. 27, No. 6, pp.517-529, 2003.
    32. Giersiepen M, Wurzinger LJ, Opitz R, Reul H, “Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves,” Int J Artif Organs, Vol.13, pp.300–306,1990.
    33. Wurzinger LJ,Opitz R, Eckstein H, “ Mechanical bloodtrauma: An overview,” Angeiologie, Vol.38, pp..81–97, 1986.
    34. Christian O, “Pulsatile Flow Studies of Prosthetic Across Valve,” Scand. J. Thorac. Cardioasc Surg, Vol.5, pp.1-12, 1997.
    35. Lim WL, Chew YT, Chew TC, Low HT., “Steady Flow Dynamics of Prosthetic Aortic Heart Valves: A Comparative Evaluation with PIV Techniques,” Journal of .Biomechanics., Vol. 31, pp. 411-421, 1998
    36. Bronzino JD, “The Biomedical Engineering Handbook,” Boca Raton, CRC Press, 2nd, 1995.
    37. Mikhail AA, Ellis R, Johnson S, “Eighteen-Year Evolution from the Lillehei-Kaster Valve to the Omni Design,” Ann. Thorac. Surg., Vol.48, pp. 561-564, 1989.
    38. Lillehei CW, Nakib A, Kaster RL, Kalke BR, and Rees JR, “The Origin and Development of Three New Mechanical Valve Designs: Thoroidal Disc, Pivoting Disc, and Rigid Bileaflet Cardiac Prostheses,” Ann. Thorac. Surg., Vol.48, pp. S35-S37, 1989.
    39. Yoganathan AP, Corcoran WH, Harrison EC, Carl JR, “The Bjork-Shiley Aortic Prosthesis: Flow Characteristics, Thrombus Formation and Tissue Overgrowth,” Circulation, Vol.58, pp.70-76, 1978.
    40. Hall KV, “The Medtronic Hall Heart Valve: Background, Latest Results, and Future Work,” Annu. of Thorac. Surg., Vol.48, pp.547-548, 1989.
    41. Lee CS, Chandran KB, Chen LD, “Cavitation Dynamics of Medtronic Hall Mechanical Heart Valve Prosthesis: Fluid Squeezing Effect,” J. Biomech. Eng., Vol.118, pp. 97-105, 1996
    42. Wu ZJ, Shu MCS, Scott DR, Hwang NHC, “The Closing Behavior of Medtronic Hall Mechanical Heart Valves,” ASAIO J., Vol.40, pp.702-706, 1994.
    43. Dexter EU, Aluri S, Radcliff RR, Zhu H, Carlson DD, Heilman TE, Chandran K B, Richenbacher WE, “In Vivo Demonstration of Cavitation Potential of a Mechanical Heart Valve,” ASAIO J., Vol.45, pp.436-441, 1990.
    44. Wang JH, “The Design Simplicity and Clinical Elegance of the St. Jude Medical Heart Valve,” Ann. Thorac. Surg., Vol.48, pp. 555-556, 1989.
    45. Westaby S, Van Nooten G., Sharif H, Pillai R, Caes F, “Valve Replacement with the ATS Open Pivot Bileaflet Prosthesis, Eur. J. Cardiothorac. Surg., Vol.10, pp. 660-665, 1996.
    46. Vallana F, Rinaldi A, “Pivot Design in Bileaflet Valves,” ASAIO Trans., Vol.38, pp.600-606, 1992.
    47. Ellis J, Yoganathan A, “A Comparison of the Hinge and Near-Hinge Flow Fields of the St. Jude Medical Hemodynamic Plus and Regent Bileaflet Mechanical Heart Valves,” J. Thorac. Cardiovasc. Surg., Vol.119, pp.83-93, 2000.
    48. Travis BR, Leo HL, Shah PA, Frakes DH, Yoganathan AP, “An Analysis of Turbulence Shear Stresses in Leakage Flow Through a Bileaflet Mechanical Prostheses,” ASME J. Biomech. Eng., Vol.124, pp.155-165, 2002.
    49. Klepetko W, “Leaflet Fracture in Edwards-Duromedics Bileaflet Valve,” J. Thorac. Cardioasc Surg, Vol.97, pp.90-94, 1989.
    50. Richard G, Beavan A, Strzepa P, “Cavitation Threshold Ranking and Erosion Characteristics of Bileaflet Heart Valve Prosthesis,” J. Heart Valve Dis., Vol.3, pp.94-101, 1994.
    51. Lee CS, Aluri S, Chandran KB, “Effect of Valve Holder Flexibility on Cavitation Initiation with Mechanical Heat Valve Prostheses: an in Vitro Study,” J. Heart Valve Dis., Vol.5, pp.104-113, 1996.
    52. Graf T, Fisher H, Reul H, Rau G, “Cavitation Potential of Mechanical Heart Valve Prosthesis,” Int. J. Artif. Organs, Vol.14, pp.169-174, 1991.
    53. Graf T, Reul H, Dietz W, Wilmes R, Rau G, “Cavitation of Mechanical Heart Valve under Physiological Conditions,” J. Heart Valve Dis., Vol.1, pp.131-141, 1992.
    54. Makhijani VB, Yang HQ, Singhal AK, Hwang NHC, “An Experimentaaaaaaal Computational Analysis of MHV Cavitation: Effects of Leaflet Squeezing and Rebound,”J. Heart Valve Dis., Vol.3, pp.235-248, 1994.
    55. Bluestein D, Einav S, Hwang NHC, “A Squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis,” J. Biomech., Vol.27, pp.1369-1378, 1994.
    56. Wu ZJ, Gao BZ, Hwang NHC, “Transient Pressure at Closing of a Monoleaflet Mechanical Heart Valve Prosthesis: Mounting Compliance Effect,” J. Heart Valve Dis., Vol.4, pp.553-567, 1995.
    57. Lee CS, Aluri S, Chandran KB, “Effect of Valve Holder Flexibility on Cavitation Initiation with Mechanical Heat Valve Prostheses: an in Vitro Study,” J. Heart Valve Dis., Vol.5, pp.104-113, 1996.
    58. Sneckenberger DS, Stinebring DR, Deutsch S et al., “Mitral Heart Valve Cavitation in an Artificial Heart Environment,” J. Heart Valve Dis. Vol.5, pp.216-227, 1996.
    59. Vinokur, M, “An Analysis of Finite -Difference and Finite-Volume Formulations of Conservation Laws,” Journal of Comput. Phys., Vol. 81, pp.1-52, 1989.
    60. Kleinstreuer C, Zhang Z, “Laminar-to-turbulent fluid-particle flows in human airway model, International Journal of Multiphase Flow,” Vol.29, No.2, pp.271 -289, 2003.
    61. Patankar SV, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Ch.6, 1980.
    62. Bern P, “Steady and Unsteady Solutions of the Navier-Stokes Equations for Flows about Airfoils at Low Speeds,” AIAA paper 91-1773, 1991
    63. Dogruoz MB, “CFD benchmark testing of selected laminar flow problems,” Thermlab database, University of Arizona, 2002.
    64. Tuncer IH and Kaya M, “Thrust Generation Caused by Flapping Airfoils in a Biplane Configuration,” Journal of Aircraft, vol. 40, No.3, pp. 509-515, 2003.
    65. Wang ZJ, “Two Dimensional Mechanism for Insect Hovering,” Physical Review Letters, Vol. 85, No.10, pp. 2216-2219, 2000.
    66. Leo HL, Simon H, Carberry J, Lee SC,and Yoganathan A “A Comparison of Flow Field Structures of Two Tri-Leaflet Polymeric Heart Valves,” Annals of Biomedical Engineering, Vol. 33, No. 4, pp. 429–443, 2005.
    67. Paul R, Apel J, Klaus S, Schügner F, Schwindke P, and Reul H, “Shear Stress Related Blood Damage in Laminar Couette Flow,” Artificial Organs, Vol. 27, No. 6, pp.517-529, 2003.
    68. YG. Lai, KB Chandrana, J Lemmonc, “A numerical simulation of mechanical heart valve closure fluid dynamics,” Journal of Biomechanics, Vol.35, pp.881–892, 2002.
    69. M Grigioni, C Daniele, U Morbiducci et al., "The Power-law Mathematical Model for Blood Damage Prediction: Analytical Developments and Physical Inconsistencies," Artificial Organs, Vol.28, No.5, pp.467-475, 2004.
    70. DF Su, CY Miao, "Blood Pressure Variability and Organ Damage, “Clinical and Experimental Pharmacology and Physiology,” Vol.28, No.9, pp.709-715, 2001.
    71. R Paul, J Apel, S Klaus, et al., "Shear Stress Related Blood Damage in Laminar Couette Flow," Artificial Organs, Vol.27, No.6, pp.517-529, 2003.
    72. Arora D, Behr M, Pasquali M, "A Tensor-based Measure for Estimating Blood Damage," Artificial Organs, Vol.28, No.11, pp.1002-1015, 2004
    73. Lurie F, Kistner RL, Eklof B, Kessler D, “Mechanism of venous valve closure and role of the valve in circulation: a new concept,” Journal of Vascular Surgery, Vol. 38, No. 5, pp. 955-961, 2003.

    下載圖示 校內:立即公開
    校外:2006-07-25公開
    QR CODE