簡易檢索 / 詳目顯示

研究生: 林續勳
Lin, Hsu-Hsun
論文名稱: 建構小波轉換域中預測型濾波器的一種創新方法論及其應用
A Novel Methodology for Constructing Prediction Filters in Wavelet-Transform Domain and Its Application
指導教授: 郭淑美
Guo, Shu-Mei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 132
中文關鍵詞: 系統辨識反覆式學習控制影像壓縮影像插值小波轉換
外文關鍵詞: System identification, iterative learning control, image compression, image interpolation, wavelet transform
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種創新的方法論以建構小波轉換域中的預測型濾波器及其在影像插值方面的應用。首先,針對具有干擾之未知非線性系統,創新地提出一種以基於最佳誤差補償疊代學習觀測器為基礎的標的輸出-標的控制輸入追蹤器。此部分的原創性包括下列創新主題:一、適用於具有系統及輸出干擾項之類比系統的線性二次最佳化類比型標的輸出軌跡追蹤器;二、適用於具有系統及輸出干擾項之資料採樣系統(即類比系統配數位控制器與零階訊號保持器)的數位重新設計線性二次最佳化數位型標的輸出軌跡追蹤器;三、針對具有未知的系統及輸出干擾項之重複運作式類比系統所提出的反覆式學習二次最佳化類比型標的輸出軌跡追蹤器;四、針對具有未知的系統及輸出干擾項之重複運作式資料取樣系統所提出的反覆式學習二次最佳化數位型標的輸出軌跡追蹤器;五、適用於具有系統及輸出干擾項之數位系統的線性二次最佳化數位型標的控制輸入暨標的輸出軌跡追蹤器;六、針對具有未知的系統及輸出干擾項之重複運作式數位系統所提出的反覆式學習二次最佳化數位型標的控制輸入暨標的輸出軌跡追蹤器;七、適用於具有系統及輸出干擾項之類比系統的線性二次最佳化類比型觀測器;八、適用於其具有系統及輸出干擾項之資料採樣系統的數位重新設計線性二次最佳化數位型觀測器;九、針對具有未知的系統及輸出干擾項之重複運作式類比系統所提出的反覆式學習二次最佳化類比型觀測器;十、針對具有未知的系統及輸出干擾項之重複運作式數位系統所提出的反覆式學習二次最佳化數位型觀測器;十一、上述方法的延伸:從給予的已知線性系統至具有時間延遲之未知非線性系統。本論文同時呈現出上述方法在自動控制領域上的應用。其次,整合上述創新提出的方法,另一種創新的方法論,以建構小波轉換域中的預測型濾波器及其在影像插值方面的應用,亦在本論文中首度被提出,所提方法的特性亦於本論文中被詳加探討。相關例題展現了本文所提方法的有效性。

    A novel methodology for constructing prediction filters in wavelet-transform domain and its novel application to image interpolation is proposed in this thesis. Firstly, a novel optimal error compensation iterative learning observer-based tracker for the unknown nonlinear system with disturbances is proposed. The novelty in this part includes the following newly presented items: 1. a new optimal analog tracker design for the continuous-time system with known disturbances, 2. a new digital-redesign linear quadratic tracker (LQT) design for the sampled-data system with known disturbances, 3. a new iterative learning LQT design for the repetitive continuous-time system with unknown disturbances, 4. a new iterative learning LQT design for the repetitive sampled-data system with unknown disturbances, 5. a new LQT design for the discrete-time system with disturbances, 6. a new iterative learning LQT design for the repetitive discrete-time system with unknown disturbances, 7. a new analog linear quadratic observer (LQO) design for the continuous-time system with known disturbances, 8. a new digital-redesign observer design for the sampled-data system with known disturbances, 9. a new iterative learning analog LQO design for the repetitive continuous-time system with unknown disturbances, 10. a new iterative learning digital LQO design for the repetitive discrete-time system with unknown disturbances, and 11. an extended applications of above design methodologies from the given linear systems to the unknown nonlinear system with input time delay. Applications of the above mentioned design methodologies on the automatic control area are also given in this thesis to demonstrate their novelty. Secondly, integrated with the above newly presented methods, another novel methodology for constructing prediction filters in wavelet-transform domain and its novel application to image interpolation as well as more detailed study on its characteristics are presented. Corresponding illustrative examples are also given in this thesis to demonstrate their effectiveness.

    摘要 I Abstract II 誌謝 IV Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 Chapter 2 Novel Optimal Error Compensation Iterative Learning Observers and Trackers for the Unknown System with Disturbances 7 2.1 A New Linear Quadratic Analog Tracker Design for the System with Disturbances 8 2.2 A New Digital-Redesign Linear Quadratic Tracker (LQT) Design for the Sampled-Data System with Known Disturbances 12 2.3 A New Iterative Learning LQT for the Repetitive System with Unknown Disturbances 16 2.4 A New Linear Quadratic Digital Tracker Design for the Discrete-Time System with Disturbances 21 2.5 A New Iterative Learning LQT for the Repetitive Discrete-Time System with Unknown Disturbances 30 2.6 A New Linear Quadratic Analog Observer Design for the Continuous-Time System with Disturbances 31 2.7 A New Digital-Redesign Observer for the Sampled-Data System with Disturbances 35 2.8 New Iterative Learning Linear Quadratic Observers for the Repetitive Systems with Unknown Disturbances 38 2.9 Extended OECILC and OECILT: From a Given Linear System with Disturbances to a Unknown Nonlinear System with Disturbance and Fault Tolerance 40 2.10 Design Procedure 50 2.11 Illustrative Examples 51 Chapter 3 A Novel Wavelet-Based Image Interpolation: The Optimal-Error-Compensation Iterative-Learning-Control Approach 60 3.1 Image Interpolation 60 3.2 Wavelet Transform 63 3.3 A Pre-study on Characteristics of the Integrated OKID, OECILC, and a Novel Methodology for Constructing the Prediction Filter 65 3.4 OECILC-Based Novel Application on the 9/7 Wavelet-Based Image Interpolation 98 Chapter 4 Conclusion 119 References 120 Appendix A : An Optimal Iterative Learning Control for Continuous-Time Systems 126

    [1] Arimoto, S., Kawamura, S., Miyazaki, F., “Bettering operation of robots by learning,” Journal of Robotic Systems , vol. 1(2), pp. 123-140, 1984.
    [2] Ho, B. L. and Kalman, R. E., “Effective construction of linear state-variable models from input-output data,” in Proc. 3rd Ann. Allerton Conf. on Circuits Syst. Theory, Monticello, IL, pp. 449-459, 1965.
    [3] Juang, J. N. and Pappa, R. S., “Effects of noise on modal parameters identified by the eigensystem realization algorithm,” Journal of Guidance, Control, and Dynamics, vol. 3, pp. 294-303, 1986.
    [4] Tsai, J. S. H. , Shieh, L. S., Zhang J. L., Coleman, N. P., “Digital redesign of pseudo-continuous-time suboptimal regulators for large-scale discrete systems,” Control Theory and Advanced Technology, vol. 5(1), pp. 37-65 ,1989.
    [5] Tsai, J. S. H., Wang, C. T., Shieh, L. S., “Model conversion and digital redesign of singular systems,” International Journal of the Franklin Institute, vol. 330(6), pp. 1063-1086, 1993.
    [6] Sheen, I. E., Tsai, J. S. H., Shieh, L. S., “Optimal digital redesign of continuous-time systems with input time delay and/or asynchronous sampling,” International Journal of the Franklin Institute, vol. 335B(4), pp. 605-616, 1998.
    [7] Sheen, I. E., Tsai, J. S. H., Shieh, L. S., “Optimal digital redesign of continuous-time systems using fractional-order hold,” Optimal Control Applications & Methods, vol. 18, pp. 399-422, 1997
    [8] Sheen, I. E., Tsai, J. S. H., Shieh, L. S., “Optimal digital redesign of continuous-time system using nonideal sampler and zero-order hold,” Journal of Control Systems and Technology 1997; 5(4): 243-252.
    [9] B. C. Kuo, Digital Control Systems, Holt, Rinehart and Winston, New York, 1980.
    [10] J. N. Juang, Applied System Identification, Prentice Hall, New Jersey, 1994.
    [11] Tsai, J. S. H., Chien, T. H., Guo, S. M., Chang, Y. P., and Shieh, L. S., “State-space self-tuning control for stochastic chaotic fractional-order chaotic systems,” IEEE Transactions on Circuits and Systems Part I: Regular Papers, vol. 54(3), pp. 632-642, 2007.
    [12] Shieh, L. S., Zho, X. M., Zhang, J. L., “Locally optimal-digital redesign of continuous-time systems,” IEEE Transactions Automatic Control, vol. 36, pp. 511-515, 1989
    [13] Tsai, J. S. H., Shieh, L. S., Zhang, J. L., Coleman, N. P., “Digital redesign of pseudo continuous-time suboptimal regulators for large-scale discrete systems,” Control Theory Advance Technology, vol. 5, pp. 37-65, 1989.
    [14] Shieh, L. S., Decrocq, B. B., Zhang, J. L., “Optimal digital redesign of cascaded analogue controllers,” Optimal Control Applications and Methods, vol. 12(4), pp. 205-219, 1991.
    [15] Huang, C. M., Tsai, J. S. H., Provence, R. S., Shieh, L. S., “The observer-based linear quadratic sub-optimal digital tracker for analog systems with input and state delays,” Optimal Control Applications & Methods, vol. 24(4), pp. 197-236, 2003.
    [16] Chen, C. H., Tsai, J. S. H., Lin, M. J., Guo, S. M., Shieh, L. S., “A novel linear quadratic observer and tracker for the linear sampled-data regular system with a direct feedthrough term: Digital redesign approach,” IMA Journal of Mathematical Control and Information 2013.
    [17] Lehmann, T. M., Gonner, C., and Spitzer, K., “Survey: interpolation methods in medical image processing,” IEEE Trans. on Medical Imaging, vol. 18(11), pp. 1049-1075, 1999.
    [18] Keys, R. G., “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 29( 6), pp. 1153-1160, 1981.
    [19] Li, X. and Orchard, M. T., “New edge-directed interpolation,” IEEE Trans. Image Processing, vol. 10(10), pp. 1521-1527, Oct. 2001.
    [20] Zhang, X. and Wu, X., “Image interpolation by adaptive 2-d autoregressive modeling and soft-decision estimation,” IEEE Trans. Image Processing, vol. 17(6), pp. 887-896, Jun. 2008.
    [21] Chen, H. C. and Wang, W. J., “Locally edge-adapted distance for image interpolation based on genetic fuzzy system,” Expert Systems with Applications, vol. 37(1), pp. 288-297, Jan. 2010.
    [22] Park, Y. S. and Park, H. W., “Arbitrary-ratio image resizing using fast DCT of composite length for DCT-based transcoder,” IEEE Trans. Image Processing, vol. 15(2), pp. 494-500, Feb. 2006.
    [23] Guo, S. M., Li, C. B., Chen, C. W., Liao, Y. C., and Tsai, J. S. H., “Enlargement and reduction of image/video via discrete cosine transform pair, part 1: novel three-dimensional discrete cosine transform and enlargement, ” Journal of Electron Imaging, vol. 16(4), 043006, pp. 1-19, 2007.
    [24] Carey, W. K., Chuang, D. B., and Hemami, S. S., “Regularity-preserving image interpolation,” IEEE Trans. Image Processing, vol. 8(9), pp. 1293-1297, Sep. 1999.
    [25] Kinebuchi, K., Muresan, D. D., and Parks, T. W., “Image interpolation using wavelet-based hidden Markov trees,” Proc. ICASSP01, vol. 3, pp. 7-11, May 2001.
    [26] Liu, J. and Moulin, P., “Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients,” IEEE Trans. Image Processing, vol. 10(11), pp. 1647-1658, Nov. 2001.
    [27] Huang, Y. L., “Wavelet-based image interpolation using multilayer perceptron,” Neural Computing & Applications, vol. 14(1), pp. 1-10, Mar. 2005.
    [28] Lin, W. P., Chen, C. M., and Chen, Y. C., “Image compression with interpolation in wavelet-transform domain,” 2005 IEEE Int. Symposium on Circuits and Systems, pp. 2084 - 2087, May 2005.
    [29] Temizel, A. and Vlachos, T., “Wavelet domain image resolution enhancement,” IEE Proc. Vis. Image Signal Processing, vol. 153(1), pp. 25-30, Feb. 2006.
    [30] Piao, Y., I. Shin, H., and Park, H. W., “Image resolution enhancement using inter-subband correlation in wavelet domain,” Proc. ICIP, vol. 1, pp. 445-448 , 2007.
    [31] Lee, W. L., Yang, C. C., Wu, H. T., and Chen, M. J., “Wavelet-based interpolation scheme for resolution enhancement of medical images,” Journal of Signal Processing Systems, vol. 55(1-3), pp. 251-265, 2009.
    [32] Kim, S. S., Kim, Y. S., and Eom, I. K., “Image interpolation using MLP neural network with phase compensation of wavelet coefficients,” Neural Computing & Applications, vol. 18(8), pp. 967-977, Nov. 2009.
    [33] Rohini, S. A., Bhurchandi, K., and Gandhi, A. S., “Successive image interpolation using lifting scheme approach,” Journal of Computer Science, vol. 6(9), pp. 961-971, 2010.
    [34] Guo, S. M., Lai, B. W., Chou, Y. C., and Yang, C. C. “Novel wavelet-based image interpolations in lifting structures for image resolution enhancement,” Journal of Electronic Imaging, vol. 20(3), pp. 033007-1~22, 2011.
    [35] Lewis, F. L., Syrmos, V. L., Optimal Control. John Wiley & Sons, New Jersey, 1995.
    [36] Guo, S. M., Shieh, L. S., Chen, G, Lin, C. F., “Effective chaotic orbit tracker a prediction based digital redesign approach,” IEEE Transaction on Circuits and System-I, Fundamental Theory and Applications, vol. 47, pp. 1557-1570, 2000.
    [37] Tsai, J. S. H., Huang, C. C., Guo, S. M., Shieh, L. S., “Continuous to discrete model conversion for the system with a singular system matrix based on matrix sign function,’’ Applied Mathematical Modelling, vol. 35(8), pp. 3893-3904, 2011.
    [38] Nasiri, M. R., “A optimal iterative learning control for continuous time system” IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on,” Paris (2006).
    [39] Chen, F. M., Tsai, J. S. H., Liao, Y. T., Guo, S. M., Ho, M. C., Shaw, F. Z., and Shieh, L. S., “An improvement on the transient response of tracking for the sampled-data system based on an improved PD-type iterative learning control”, Journal of The Franklin Institute, vol. 351, pp. 1130-1150, 2014
    [40] Ogata, K., Discrete-time Control Systems, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
    [41] Wang, H. P., Tsai, J. S. H., Yi, Y. I., and Shieh, L. S., “Lifted digital redesign of observer-based tracker for sampled-data system”, International Journal of Systems Science, vol. 35, no. 4, pp. 255-271, 2004.
    [42] Lee, Y. Y., Tsai, J. S. H., Shieh, L. S., and Chen, G., “Equivalent linear observer-based tracker for stochastic chaotic system with delays and disturbances”, IMA Journal of Mathematical Control and Information, vol. 22, pp. 266-284, 2005.
    [43] Rafael, C. G., Richard, E. W., Digital Image Processing, Prentice-Hall, New Jersey, 2002.
    [44] Kailath T., Linear System, Prentice-Hall, New Jersey, 1980.
    [45] Guo, S. M., Chang, W. H., and Tsai, J. S. H., “JPEG 2000 wavelet filter design framework with chaos evolutionary programming,” Signal Processing, vol. 88, pp. 2542-2553, 2008.
    [46] Fogel, D. B., Evolutionary Computation: The Fossil Record, IEEE Press, Piscataway, New Jersey, 1998.
    [47] The test images are from http://sipi.usc.edu/database/

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE