簡易檢索 / 詳目顯示

研究生: 楊佳寶
Yang, Chia-Pao
論文名稱: 方向性凝固之實驗與數值分析
Experimental and Numerical Analysis on Directional Solidification
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 167
中文關鍵詞: 方向性凝固錫鉛合金逆運算法界面熱傳係數
外文關鍵詞: directional solidification, Sn-Pb Alloy, inverse scheme, interfacial heat transfer
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑄造技術發展已有數千年的歷史,隨著時代進步與環境的變遷,對於材料的特性及強度需求增加,而在金屬凝固過程中,溫度與濃度場的變化則是會影響材料的顯微結構,其中微結構的控制更是改善機械性質及物理特性的關鍵所在。一般的鑄造過程是不易控制其凝固結構之形態,最多只能改變其晶粒大小,而方向性凝固之方法可使得鑄件的微結構沿著某一固定方向成長。
    本文以錫鉛合金為測試材料,採三種實驗模式來探討不同冷激銅盒入口水溫、載台下降速率與加熱器溫度,對於方向性凝固之影響。並透過巨、微觀金相組織觀察、冷卻曲線、溫度梯度、鑄件各位置離開加熱區時間與凝固時間的分析,來了解鑄件晶粒尺寸與對晶體成長之束縛控制的情形,以及溫度場的分佈。
    本研究進一步以有限差分法與Beck逆運算法為基礎,藉由此方法來逆運算錫鉛合金在方向性凝固實驗中,在軸向底部、頂部與徑向的界面熱傳係數,再以此界面熱傳係數計算鑄件凝固時之溫度場的變化,並與實驗溫測值作比較分析。

    The casting skill has been developed for several thousands years. With the time progress and the environmental change, the material application becomes more severe and hence the promotion requirement of material properties and strength increases. In a solidification process of metal, the temperature and concentration fields will affect the microstructures of materials and the influence is the key point of improving the mechanical and physical properties. In a general casting process, it is not easy to control the morphology of solidifying microstructures, in which only the grain size can be easily changed. The scheme of directional solidification can make the microstructures grow along a fixed direction.
    In this study, Sn-Pb alloy is used as the testing material and three experimental models of different water temperatures of copper chill, descending speeds of platform and heater temperatures are designed to study their effects on the directional solidification. After the solidification, the macro and micro structures are observed. The effects of these three models on cooling curve, temperature gradient, growth rate, grain size, the constraint of dendrite growth, and temperature distributions are also investigated.
    Further, the finite difference method and the Beck inverse scheme are utilized to analyze the temperature variation during the process of directional solidification. At first, the metal/mold interfacial heat transfer coefficients along the axial direction at the bottom and the top of the casting and those along the radial direction on the peripheral surface are estimated inversely based on the measured temperatures during the solidification experiments. With the interfacial coefficients, the temperature field of the casting in the process is calculated numerically and the computed temperatures are compared with the experimentally measured ones.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究目的與方法 5 第二章 凝固理論模式與數值分析 7 2-1 凝固過程 7 2-1-1 成核階段(Nucleation) 8 2-1-2 成長與侵犯階段(Growth and Impingement) 9 2-2 金屬之晶粒成長形狀 9 2-3 方向性凝固之模式 11 2-4 數學模式之基本假設 12 2-5 差分方程式 12 2-6 界面熱傳係數之計算 14 2-6-1 Beck逆運算法 15 2-6-2 Beck逆運算的處理模式 16 2-7 潛熱效應之計算方法 19 2-7-1 純金屬 19 2-7-2 錫鉛合金(Sn-10wt%Pb) 22 第三章 實驗設備與方法 24 3-1 實驗設備 24 3-1-1 熱電偶點焊機與氫氧焰焊接機 24 3-1-2 熔解爐 25 3-1-3 溫度擷取設備與量測方式 25 3-1-4 加熱及溫度控制設備 26 3-1-5 升降平台與冷激端設備 27 3-1-6 恆溫循環水槽 27 3-2 方向性凝固機構之實驗設計 28 3-2-1 實驗模式Case A 28 3-2-2 實驗模式Case B 29 3-2-3 實驗模式Case C 30 3-3 觀察金相顯微組織之實驗 30 3-3-1 金相觀察之實驗設備 30 3-3-2 金相觀察之實驗步驟與方法 32 3-4 實驗數據整理與計算 34 第四章 結果與討論 37 4-1 金相組織觀察 37 4-1-1 鑄件之巨觀金相觀察 37 4-1-2 鑄件之微觀金相觀察 39 4-1-2-1 橫截面之晶粒數分析 39 4-1-2-2 縱截面之成長方向 40 4-2 界面熱傳係數之分析 42 4-2-1 鑄件之軸向(z方向) 42 4-2-2 鑄件之徑向(r方向) 44 4-3 鑄件之暫態溫度量測與數值分析比較 45 4-3-1軸向冷卻曲線之分析觀察與數值分析比較 46 4-2-2溫度梯度之分析觀察與數值分析比較 47 4-2-3鑄件離開加熱區與凝固時間之分析觀察與數值分析比較 48 第五章 結論 50 參考文獻 52 附錄A 溫度場之差分方程式推導 142 附錄B 錫鉛合金之潛熱式推導 160 附錄C 鑄件試片之裁切示意圖 163 附錄D 鑄件試片之觀察位置 164 附錄E 鑄件試片橫截面及縱切面之拍攝位置 165 附錄F 晶粒數取樣方式 166

    [1] M. Rettenmayer, and H. E. Exner, “ Directioanal Solidification ” Materials Science and Technology pp.2183-2189, 2001.
    [2] C. M. Klaren, J. D. Verhoeven, and R. Trivedi, “Primary Dendrite Spacing of Lead Dendrites in Pb-Sn and Pb-Au Alloys,” Metallurgical Transactions 11A, pp. 1853-1861, 1980.
    [3] D. G. McCartney, and J. D. Hunt, “Measurements of Cell and Primary Dendrite Arm Spacings in Directionally Solidified Aluminum Alloys,” Acta Metallurgica, Vol. 29, pp. 1851-1863, 1981.
    [4] Guolu Ding, Weidong Huang, Xin Lin, and Yaohe Zhou “Predication of Average Spacing for Constrained Cellular/Dendrite Growth,” Journal of Crystal Growth 177, pp. 281-288, 1997.
    [5] C. T. Rios, and R. Caram, “Primary Dendrite Spacing as a Function of Directional Solidification Parameters in an Al-Si-Cu Alloy,” Journal of Crystal Growth 174, pp. 65-69, 1997.
    [6] Ming Li, Takassuke Mori, and Hajime Iwasaki, “Effect of Solute Convection on The Primary Arm Spacings of Pb-Sn Binary Alloys During Upward Directional Solidification,” Materials Science and Engineering A265, pp. 217-223, 1999.
    [7] E. Cadirli, and M. Gunduz, “The Directional Solidification of Pb-Sn Alloys,” Journal of Materials Science 35, pp. 3837-3848, 2000.
    [8] E. Cadirli, and M. Gunduz, “The Dependence of Lamellar Spacing on Growth Rate and Temperature Gradient in the lead-tin Eutectic Alloy,” Journal of Materials Processing Technology 97, pp. 74-81, 2000.
    [9] Fernando sa, Otavio Lima Rocha, Claudio Alves Siqueira, and Amauri Garcia, “The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys,” Materials Science Engineering A373, pp. 131-138, 2004.
    [10] J. E. Spinelli, I. L. Ferreira, and A. Garcia, “Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys,” Journal of Alloys and Compounds 384, pp. 217-226, 2004.
    [11] H. B. Dong, and P. D. Lee, “Simulation of the Columnar-to-Equiaxed Transition in Directionally Solidified Al-Cu Alloys,” Acta Materialia, Vol. 53, No. 3, pp. 659-668, 2005.
    [12] S. Ho, and R. D. Pehlke: Metal-Mold Interfacial Heat Transfer, Metallurgical Transaction B, Vol. 16B, pp. 585-594, 1985.
    [13] Shumakov, N.V., “A Method for the Experiment Study of the Process of Heating a Soild Body,” SOVIET Physics-Technical Physics, Vol. 2, pp.771, 1957.
    [14] Stolz, G. Tr., “Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes,” ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, Feb., 1960.
    [15] Beck J. V., “Calculation of Surface Heat Flux from an Integral Temperature History,” ASME J. Heat Transfer, 62-HT-46, 1962.
    [16] Beck J. V., “Surface Heat Flux Determination Using an Integral Method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
    [17] Beck J. V., “Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 13, pp. 703-716, 1970.
    [18] Sparrow E. M.,and Lundgren T. S., “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech., Vol. 86e, pp. 369-375, 1964.
    [19] 何廣福,“方向性凝固之研究”,國立成功大學工程科學研究所碩士論文,2005。
    [20] 趙國傑,“凝固參數對於方向性成長之結構參數影響分析”,國立成功大學工程科學研究所碩士論文,2007。
    [21] M. Yamaguchi, D. R. Johnson, H. N. Lee, and H. Inui, “Directional solidification of TiAl-base alloys,” Intermetallics, Vol. 8, No. 5-6, pp. 511-517, 2000.
    [22] 呂璞石,黃振賢,“金屬材料”,文京圖書,pp. 39,1990。
    [23] 林盈佐,“凝固顯微組織與模式分析”,國立成功大學工程科學研究所碩士論文,1998。
    [24] W. Kurz, and D. J. Fisher, “Fundamentals of Solidification,” Tran Tech Publication Ltd, Switzerland, 1998.
    [25] William F. Smith 原著 ; 李春穎,許煙明,陳忠仁 譯,“材料科學與工程”,高立圖書有限公司,1994。
    [26] Reed-Hill, Abbaschian 原著;劉偉隆,林淳杰,曾春風,陳文照 譯,“物理冶金”,全華科技圖書,1995。
    [27] 林盈佐,“凝固顯微組織與模式分析”,國立成功大學工程科學研究所碩士論文,1998。
    [28] 林明獻,“矽晶圓半導體材料技術”,全華圖書股份有限公司,2007。
    [29] Otávio Lima Rocha, Cláudio Alves Siqueira, and Amauri Garcia, “Cellular/Dendritic Transition During Unsteady-State Unidirectional Solidification of Sn-Pb Alloys,” Materials Science and Engineering A, Vol. 347, No. 1-2, pp. 59-69, 2003.
    [30] 韋孟育,“材料實驗方法-金相分析技術”,全華科技圖書股份有限公司,pp. 14,1990。
    [31] “Standard Methods for Estimationg the Average Grain Size of Metals” , Annual Books of ASTM Standards, Vol. 03, ASTM, USA, pp. 120-156, 1984.

    下載圖示 校內:2015-08-25公開
    校外:2015-08-25公開
    QR CODE