| 研究生: |
楊佳寶 Yang, Chia-Pao |
|---|---|
| 論文名稱: |
方向性凝固之實驗與數值分析 Experimental and Numerical Analysis on Directional Solidification |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 方向性凝固 、錫鉛合金 、逆運算法 、界面熱傳係數 |
| 外文關鍵詞: | directional solidification, Sn-Pb Alloy, inverse scheme, interfacial heat transfer |
| 相關次數: | 點閱:153 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑄造技術發展已有數千年的歷史,隨著時代進步與環境的變遷,對於材料的特性及強度需求增加,而在金屬凝固過程中,溫度與濃度場的變化則是會影響材料的顯微結構,其中微結構的控制更是改善機械性質及物理特性的關鍵所在。一般的鑄造過程是不易控制其凝固結構之形態,最多只能改變其晶粒大小,而方向性凝固之方法可使得鑄件的微結構沿著某一固定方向成長。
本文以錫鉛合金為測試材料,採三種實驗模式來探討不同冷激銅盒入口水溫、載台下降速率與加熱器溫度,對於方向性凝固之影響。並透過巨、微觀金相組織觀察、冷卻曲線、溫度梯度、鑄件各位置離開加熱區時間與凝固時間的分析,來了解鑄件晶粒尺寸與對晶體成長之束縛控制的情形,以及溫度場的分佈。
本研究進一步以有限差分法與Beck逆運算法為基礎,藉由此方法來逆運算錫鉛合金在方向性凝固實驗中,在軸向底部、頂部與徑向的界面熱傳係數,再以此界面熱傳係數計算鑄件凝固時之溫度場的變化,並與實驗溫測值作比較分析。
The casting skill has been developed for several thousands years. With the time progress and the environmental change, the material application becomes more severe and hence the promotion requirement of material properties and strength increases. In a solidification process of metal, the temperature and concentration fields will affect the microstructures of materials and the influence is the key point of improving the mechanical and physical properties. In a general casting process, it is not easy to control the morphology of solidifying microstructures, in which only the grain size can be easily changed. The scheme of directional solidification can make the microstructures grow along a fixed direction.
In this study, Sn-Pb alloy is used as the testing material and three experimental models of different water temperatures of copper chill, descending speeds of platform and heater temperatures are designed to study their effects on the directional solidification. After the solidification, the macro and micro structures are observed. The effects of these three models on cooling curve, temperature gradient, growth rate, grain size, the constraint of dendrite growth, and temperature distributions are also investigated.
Further, the finite difference method and the Beck inverse scheme are utilized to analyze the temperature variation during the process of directional solidification. At first, the metal/mold interfacial heat transfer coefficients along the axial direction at the bottom and the top of the casting and those along the radial direction on the peripheral surface are estimated inversely based on the measured temperatures during the solidification experiments. With the interfacial coefficients, the temperature field of the casting in the process is calculated numerically and the computed temperatures are compared with the experimentally measured ones.
[1] M. Rettenmayer, and H. E. Exner, “ Directioanal Solidification ” Materials Science and Technology pp.2183-2189, 2001.
[2] C. M. Klaren, J. D. Verhoeven, and R. Trivedi, “Primary Dendrite Spacing of Lead Dendrites in Pb-Sn and Pb-Au Alloys,” Metallurgical Transactions 11A, pp. 1853-1861, 1980.
[3] D. G. McCartney, and J. D. Hunt, “Measurements of Cell and Primary Dendrite Arm Spacings in Directionally Solidified Aluminum Alloys,” Acta Metallurgica, Vol. 29, pp. 1851-1863, 1981.
[4] Guolu Ding, Weidong Huang, Xin Lin, and Yaohe Zhou “Predication of Average Spacing for Constrained Cellular/Dendrite Growth,” Journal of Crystal Growth 177, pp. 281-288, 1997.
[5] C. T. Rios, and R. Caram, “Primary Dendrite Spacing as a Function of Directional Solidification Parameters in an Al-Si-Cu Alloy,” Journal of Crystal Growth 174, pp. 65-69, 1997.
[6] Ming Li, Takassuke Mori, and Hajime Iwasaki, “Effect of Solute Convection on The Primary Arm Spacings of Pb-Sn Binary Alloys During Upward Directional Solidification,” Materials Science and Engineering A265, pp. 217-223, 1999.
[7] E. Cadirli, and M. Gunduz, “The Directional Solidification of Pb-Sn Alloys,” Journal of Materials Science 35, pp. 3837-3848, 2000.
[8] E. Cadirli, and M. Gunduz, “The Dependence of Lamellar Spacing on Growth Rate and Temperature Gradient in the lead-tin Eutectic Alloy,” Journal of Materials Processing Technology 97, pp. 74-81, 2000.
[9] Fernando sa, Otavio Lima Rocha, Claudio Alves Siqueira, and Amauri Garcia, “The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys,” Materials Science Engineering A373, pp. 131-138, 2004.
[10] J. E. Spinelli, I. L. Ferreira, and A. Garcia, “Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys,” Journal of Alloys and Compounds 384, pp. 217-226, 2004.
[11] H. B. Dong, and P. D. Lee, “Simulation of the Columnar-to-Equiaxed Transition in Directionally Solidified Al-Cu Alloys,” Acta Materialia, Vol. 53, No. 3, pp. 659-668, 2005.
[12] S. Ho, and R. D. Pehlke: Metal-Mold Interfacial Heat Transfer, Metallurgical Transaction B, Vol. 16B, pp. 585-594, 1985.
[13] Shumakov, N.V., “A Method for the Experiment Study of the Process of Heating a Soild Body,” SOVIET Physics-Technical Physics, Vol. 2, pp.771, 1957.
[14] Stolz, G. Tr., “Numerical Solution to An Inverse Problem of Heat Condition for Simple Shapes,” ASME Journal of Heat Transfer, Vol. 82, pp. 20-26, Feb., 1960.
[15] Beck J. V., “Calculation of Surface Heat Flux from an Integral Temperature History,” ASME J. Heat Transfer, 62-HT-46, 1962.
[16] Beck J. V., “Surface Heat Flux Determination Using an Integral Method,” Nucl. Eng. Des., Vol. 7, pp. 170-178, 1968.
[17] Beck J. V., “Nonlinear Estimation Applied to the Nonlinear Inverse Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 13, pp. 703-716, 1970.
[18] Sparrow E. M.,and Lundgren T. S., “The Inverse Problem in Transient Heat Conduction,” J. Appl. Mech., Vol. 86e, pp. 369-375, 1964.
[19] 何廣福,“方向性凝固之研究”,國立成功大學工程科學研究所碩士論文,2005。
[20] 趙國傑,“凝固參數對於方向性成長之結構參數影響分析”,國立成功大學工程科學研究所碩士論文,2007。
[21] M. Yamaguchi, D. R. Johnson, H. N. Lee, and H. Inui, “Directional solidification of TiAl-base alloys,” Intermetallics, Vol. 8, No. 5-6, pp. 511-517, 2000.
[22] 呂璞石,黃振賢,“金屬材料”,文京圖書,pp. 39,1990。
[23] 林盈佐,“凝固顯微組織與模式分析”,國立成功大學工程科學研究所碩士論文,1998。
[24] W. Kurz, and D. J. Fisher, “Fundamentals of Solidification,” Tran Tech Publication Ltd, Switzerland, 1998.
[25] William F. Smith 原著 ; 李春穎,許煙明,陳忠仁 譯,“材料科學與工程”,高立圖書有限公司,1994。
[26] Reed-Hill, Abbaschian 原著;劉偉隆,林淳杰,曾春風,陳文照 譯,“物理冶金”,全華科技圖書,1995。
[27] 林盈佐,“凝固顯微組織與模式分析”,國立成功大學工程科學研究所碩士論文,1998。
[28] 林明獻,“矽晶圓半導體材料技術”,全華圖書股份有限公司,2007。
[29] Otávio Lima Rocha, Cláudio Alves Siqueira, and Amauri Garcia, “Cellular/Dendritic Transition During Unsteady-State Unidirectional Solidification of Sn-Pb Alloys,” Materials Science and Engineering A, Vol. 347, No. 1-2, pp. 59-69, 2003.
[30] 韋孟育,“材料實驗方法-金相分析技術”,全華科技圖書股份有限公司,pp. 14,1990。
[31] “Standard Methods for Estimationg the Average Grain Size of Metals” , Annual Books of ASTM Standards, Vol. 03, ASTM, USA, pp. 120-156, 1984.