簡易檢索 / 詳目顯示

研究生: 吳彥宏
Wu, Yen-Hung
論文名稱: 無電解電容之七階換流器
A Novel Seven-Level Inverter without Electrolytic Capacitor
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 多階層換流器無電解電容變壓器電氣隔離數位訊號處理器
外文關鍵詞: Multi-level inverter, electrolytic capacitor-less, transformer, electric isolation, DSP (Digital Signal Processor )
相關次數: 點閱:112下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於研製一無電解電容之七階換流器,以解決傳統換流器架構中,分壓電容上之電壓不平衡所造成的波形失真,與電解電容使用壽命較短之問題;故本架構應用兩組變壓器取代電解電容分壓電源之架構,產生七階電壓輸出,能避免電容電壓不平衡、提升電路壽命、且具備電氣隔離效果。

    本論文中將會說明本架構之動作原理及控制流程,最後採用TI公司所生產之TMS32F28335數為訊號處理器為核心,研製一輸入電壓300V,輸出電壓220V 60Hz,輸出功率3kW之實驗室雛形電路,以驗證本文架構之正確性即可行性,並測試其電路效能。

    In this thesis, a novel single-phase seven-level electrolytic capacitor-less inverter topology is proposed. In conventional inverter topologies, the problems of voltage unbalance of capacitor induce distortion of output voltage. And, the life time of capacitors is shorter than semiconductor components. Due to, the proposed topology which is composed of two transformers can achieve seven multi-level output without electrolytic capacitor. hence, it would not have the question of voltage unbalance of electrolytic capacitors, the longer life time and electric isolation are achieved.

    The operating principle, mode analysis, control method and modulation method are introduced. Finally, a 220 Vrms / 3 kW laboratory prototype of seven-level inverter with input voltage 300 Vdc is implemented to verify the theoretical analysis and the performance. The control scheme is presented by DSP (Digital Signal Processor ) TMS320F28335.

    考 試 合 格 證 明 (中文) I 考 試 合 格 證 明 (英文) II 中 文 摘 要 III 英 文 延 伸 摘 要 IⅤ 誌 謝 Ⅹ 目 錄 XI 表 目 錄 ⅩIII 圖 目 錄 XIⅤ 第一章 緒論 01 1.1研究背景與動機 01 1.2研究內容與目的 03 1.3論文之大綱 04 第二章 多階層換流器之架構與應用 05 2.1前言 05 2.2多階層換流器常見之架構 06 2.2.1二極體箝位式多階層換流器 06 2.2.2飛輪電容式多階層換流器 10 2.2.3串接式多階層換流器 12 2.2.4簡易型多階層換流器 13 2.2.5具電壓平衡電路之五階二極體箝位式換流器 16 2.3正弦脈波寬度調變切換技術 20 第三章 無電解電容之七階換流器 23 3.1前言 23 3.2相位配置脈波寬度調變 24 3.3電容電壓不平衡模擬分析 28 3.4無電解電容之七階換流器 32 第四章 實驗結果 55 4.1前言 55 4.2模擬結果 57 4.3實驗結果 61 第五章 結論與未來展望 67 5.1結論 67 5.2未來展望 68 參 考 文 獻 69

    [1] Q. Tang, D. Czarkowski, X. Yang, and S. Lu, “A New Diode-Clamping Multilevel Converter with Reduced Device Count and DC Voltage Balancing Control,” in Proc. IEEE ECCE, pp. 3116-3123, Sep. 2009.
    [2] X. Yuan and I. Barbi, “Fundamentals of a New Diode Clamping Multilevel Inverter,” IEEE Transactions on Industrial Electronics, vol. 15, no.4, pp. 711-718, July 2000.
    [3] M. Marchesoni and P. Tensa, “Diode-Clamped Multilevel Converters a Practicable Way to Balance DC-Link Voltages,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 752 - 765, Aug. 2002.
    [4] W. K. Lee, T. J. Kim, D. W. Kang, and D. S. Hyun, “A Carrier-Rotation Strategy for Voltage Balancing of Flying Capacitors in Flying Capacitor Multi-Level Inverter,” in Proc. IEEE IECON, vol. 3, pp. 2173-2178, Nov. 2003.
    [5] D. W. Kang, B. K. Lee, J. H. Jeon, T. J. Kim, and D. S. Hyun, “A Symmetric Carrier Technique of CRPWM for Voltage Balance Method of Flying-Capacitor Multilevel Inverter,” IEEE Transactions on Industrial Electronics, vol. 52, no. 3, pp. 879-888, Jun. 2005.
    [6] M. Khazraei, H. Sepahvand, K. A. Corzine, and M. Ferdowsi, “Active Capacitor Voltage Balancing in Single-Phase Flying-Capacitor Multilevel Power Converters,” IEEE Transactions on Industrial Electronics, vol. 59, no.2, pp. 769-778, Feb. 2012.
    [7] P. Lezana, J. Rodriguez, and D. A. Oyarzun, “Cascaded Multilevel Inverter with Regeneration Capability and Reduced Number of Switches,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1059-1066, Mar. 2008.
    [8] L. A. Tolbert, F. Z. Peng, T. Cunnyngham, and J. N. Chiasson, “Charge Balance Control Schemes for Cascade Multilevel Converter in Hybrid Electric Vehicles,” IEEE Transactions on Industrial Electronics, vol. 49, no. 5, pp. 1058-1064, Oct. 2002.
    [9] Y. Hinago and H. Koizumi, “A Single-Phase Multilevel Inverter Using Switched Series/Parallel DC Voltage Sources,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2643-2650, Aug. 2010.
    [10] G. Ceglia, V. Guzman, C. Sanchez, F. Ibanez, J. Walter, and M. I. Gimenez, “A New Simplified Multilevel Inverter Topology for DC-AC Conversion,” IEEE Transactions on Industrial Electronics, vol. 21, no. 5, pp. 1311-1319, September 2006.
    [11] B. R. Lin and Z. L. Hung, “A Single-Phase Bidirectional Rectifier with Power Factor Correction,” in Proceedings IEEE IET. Conf., 2001, pp. 601-605.
    [12] K. Sano and H. Fujita, “Voltage-Balancing Circuit Based on a Resonant Switched-Capacitor Converter for Multilevel Inverters,” IEEE Trans. on Industry Applications, vol. 44, no. 6, pp. 1768-1776, Nov. 2008.
    [13] K. Hasegawa and H. Akagi, “A New DC-Voltage-Balancing Circuit Including a Single Coupled Inductor for a Five-Level Diode-Clamped PWM Inverter,” IEEE Trans. on Industry Applications, vol. 47, no. 2, pp. 841-852, Mar. 2011.
    [14] M. Calais, L. J. Borle, and V. G. Agelidis, “ Analysis of Multicarrier PWM Methods for A Single-Phase Five Level Inverter,” in Proceedings IEEE PESC '01., vol. 3, pp. 1351 – 1356, June 2001.
    [15] A. M. Massoud, S. J. Finney, and B. W. Williams, “Control Techniques for Multilevel Voltage Source Inverters,” in Proceedings IEEE PESC '03., vol. 1, pp. 171 – 176, June 2003.
    [16] N. A. Rahim, K. Chaniago, and J. Selvaraj, “Single-Phase Seven-Level Grid-Connected Inverter for Photovoltaic System,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2435-2443, Jun. 2011.

    下載圖示 校內:2019-09-03公開
    校外:2019-09-03公開
    QR CODE