簡易檢索 / 詳目顯示

研究生: 陳盈銓
Chen, Ying-Chuan
論文名稱: 濺鍍氧化鉭電阻式記憶體之電阻轉換特性
Resistive switching characteristics of sputtered TaOx RRAM
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 電阻式記憶體
外文關鍵詞: resistive random access memory
相關次數: 點閱:87下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電阻式隨機存取記憶體(Resistive Random Access Memory, RRAM)展現優異的性能,而被視為是最有可能取代動態隨機存取記憶體(DRAM)及快閃記憶體(Flash memory)的前瞻性記憶體,但因為其電阻轉換機制尚未有明確定論,所以影響元件發展的速度,以及商品化的表現與穩定度。
    本實驗利用鉭金屬靶進行反應性射頻磁控濺鍍製備氧化鉭(TaOx)薄膜,做為電阻式記憶體元件的主動層,分別沉積銅(Cu) 、鉑(Pt)及鉭(Ta)上電極,製備 Cu/TaOx/Pt, Pt/TaOx/Pt及Ta/TaOx/Pt三元件,探討上電極材料(Cu、Pt & Ta)對元件電性表現之影響。藉由各元件的電性表現與材料分析,嘗試了解TaOx RRAM的電阻轉換機制。
    在材料分析及元件電性量測方面,本實驗利用電子微探儀(EPMA)分析TaOx薄膜的O與Ta之計量比;利用低掠角X光繞射分析儀(GIAXRD)及穿透式電子顯微鏡(TEM)之電子繞射,分析TaOx薄膜的結晶性;利用X光光電子能譜儀(XPS),分析靠近上電極處與主動層內部的TaOx鍵結型態;最後利用精密半導體參數分析儀(Agilent 4156C)進行RRAM元件電性量測分析。
    材料分析結果顯示,TaOx薄膜晶體結構為非晶態,而O/Ta的比值為2.43。而Ta-O鍵結型態分析結果顯示,靠近上電極界面的Ta-O鍵結,會隨上電極材料不同而有所變化。電性分析結果顯示,Pt/TaOx/Pt元件在寫入(Write)之後,元件會維持在低電阻態,而無法進行抹除的動作。Cu/TaOx/Pt元件可以雙極性(正偏壓寫入,負偏壓抹除)操作元件,進行寫入/抹除的動作。藉由統計元件從高電阻態轉換到電阻態的臨界電壓(Vset),可算出Cu/TaOx/Pt元件之平均臨界電壓為3.00V,臨界電壓標準差為2.02 V,而Cu/TaOx/Pt的元件可運作次數(Endurance)只有20次。在雙極性的運作模式下,Ta/TaOx/Pt元件的的平均臨界電壓為3.70 V,臨界電壓標準差為0.79 V,且其可運作次數測試可達2500次。由元件的臨界電壓標準差以及可運作次數,顯示在雙極性運作下,Ta/TaOx/Pt元件相較於Cu/TaOx/Pt與Pt/TaOx/Pt有較優異的電性表現。

    According to the outstanding performances, resistance random access memory (RRAM) is regarding as the excellent substitution for DRAM and Flash memory in the emerging memories. Nevertheless, the development and commercialization of the device are set stuck because of its controversial resistive switching mechanism.
    In this research, we deposite tantalum oxide (TaOx) thin films by reactive sputtering from tantalum (Ta) target and deposite copper (Cu), platinum (Pt) and tantalum (Ta) as top electrode to fabricate Cu/TaOx/Pt, Pt/TaOx/Pt and Ta/TaOx/Pt devices. The switching mechanisms are explored base on electrical properties and material characteristics.
    Regarding to material characteristics and the electrical properties, the composition of TaOx is determined by Electron probe x-ray microanalyzer (EPMA). The crystal structure of TaOx films are identified by grazing incident angle x-ray diffraction (GIAXRD). X-ray photoelectron spectroscopy (XPS) depth profiling spectra are applied for chemical bonding of TaOx. Finally, the electrical properties of RRAM devices are measure by precision semiconductor parameter analyzer (agilent 4156C).
    The material characteristics reveal the TaOx film is amorphous and the O/Ta atomic ratio of TaOx is 2.43. The chemical bonding stae of Ta-O varies with material of top electrode. The electrical properties show that the Pt/TaOx/Pt device keeps at low resistance state (LRS) after writing and can’t erased to high resistance state (HRS). The Cu/TaOx/Pt device can write to LRS and erase to HRS with bipolar operation mode. By gathering statistics of threshold voltage (Vset) form HRS to LRS, the average of Vset of Cu/TaOx/Pt device is 3.00 V, and the standard deviation of Vset is 2.02 V. In addition, its endurance is only twenty times. With biopolar operation mode, the average of Vset and the standard deviation of Vset of Ta/TaOx/Pt device is 3.70 V and 0.79 V. Besides, it has a better endurance which is 2500 times. The sdandard deviation of Vset and endurance show that the Ta/TaOx/Pt has better electrical performance than the other devices with bipolar operation mode.

    第1章 緒論 1 1-1 前言 1 1-2 研究目的及動機 2 第2章 理論基礎 5 2-1 記憶體簡介與未來發展 5 2-2 電阻式隨機存取記憶體(RRAM) 10 2-2.1 電流-電壓特性曲線(I-V curve) 10 2-2.2 電阻轉換機制 13 2-3 氧化鉭應用於電阻式記憶體之研究 20 2-4 介電層導電機制 22 2-4.1 穿隧(Tunning) 22 2-4.2 熱離子發射(Thermionic emission)/蕭特基發射(Schottky emission) 23 2-4.3 夫倫克爾-普爾(Frenkel-Poole) 24 2-4.4 歐姆效應(Ohmic) 24 2-4.5 離子傳導(Ionic conduction) 25 2-4.6 空間電荷限制電流(Space-charge-limited, SCLC) 25 第3章 實驗方法與步驟 29 3-1 實驗材料 29 3-1.1 基板材料(Substrate) 29 3-1.2 濺鍍靶材(Target) 29 3-1.3 實驗使用氣氛(Gas Ambient) 30 3-1.4 實驗相關藥品與耗材 31 3-2 實驗設備 32 3-2.1 薄膜濺鍍系統(Sputter System) 32 3-2.2 乾式熱氧化系統(Dry Oxidation System) 33 3-2.3 快速熱退火系統(Rapid Thermal Annealing System) 33 3-3 實驗流程 34 3-3.1 基板製備 34 3-3.2 氧化鉭電阻式記憶體元件製備 36 3-3.3 氧化鉭薄膜快速熱退火處理 37 3-3.4 電子微探儀(EPMA)分析試片製備 37 3-3.5 X光光電子能譜儀(XPS)分析試片製備 37 3-4 分析儀器 38 3-4.1 表面粗度儀(α-step) 38 3-4.2 低掠角X光繞射分析儀(Glancing Incident Angle XRD, GIAXRD) 38 3-4.3 電子微探儀(Electron Probe X-ray Microanalyzer, EPMA) 39 3-4.4 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 39 3-4.5 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 40 3-4.6 精密半導體參數分析儀(Precision Semiconductor Parameter Analyzer) 40 第4章 結果與討論 41 4-1 試片命名及結構 41 4-2 薄膜材料分析 44 4-2.1氧化鉭薄膜成分分析 44 4-2.2氧化鉭薄膜結晶性分析 46 4-3 Cu/TaOx/Pt & Cu/TaOx RTA/Pt 元件 49 4-3.1 電流-電壓(I-V)特性曲線 51 4-3.2 元件可運作次數(Endurance) 56 4-3.3 元件記憶穩定保持時間(Retention) 59 4-3.4 TEM顯微結構觀察 61 4-3.5 XPS縱深分析 64 4-3.6電阻轉換機制 66 4-4 Pt/TaOx/Pt元件 68 4-4.1 電流-電壓(I-V)特性曲線 68 4-4.2 TEM顯微結構觀察 71 4-4.3 XPS縱深分析 74 4-5 Ta/TaOx/Pt元件 76 4-5.1 電流-電壓(I-V)特性曲線 76 4-5.2 元件可運作次數(Endurance) 82 4-5.3 元件記憶穩定保持時間(Retention) 86 4-5.4 TEM顯微結構觀察 88 4-5.5 XPS縱深分析 91 4-5.6 元件於高/低電阻態之電流傳導機制 93 4-5.7 Ta/TaOx/Pt元件之界面關係 97 4-5.8 電阻轉換機制 99 4-6 各元件電性比較 107 第5章 結論 115 第6章 參考文獻 117

    [1] 彭茂榮, "全球前瞻記憶體發展趨勢," 台灣半導體產業協會簡訊, 54, 2 (2010).
    [2] J. Hutchby and M. Garner, "Assessment of the Potential & Maturity of Selected Emerging Reserch Memory Technologies Workshop & ERD/ERM Working Group Meeting," The International Technology Roadmap for Semiconductors, (2010).
    [3] Z. Yan, Y. Guo, G.Zhang, and J. M. Liu, "High-Performance Programmable Memory Devices Based on Co-Doped BaTiO3," Advanced Materials, 23, 1351 (2011).
    [4] J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, "High switching endurance in TaOx memristive devices," Applied Physics Letters, 97, 232102 (2010).
    [5] W. C. Chien, Y. C. Chen, F. M. Lee, Y. Y. Lin, E. K. Lai, Y. D. Yao, J. Gong, S. F. Horng, C. W. Yeh, S. C. Tsai, C. H. Lee, Y. K. Huang, C. F. Chen, H. F. Kao, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, "A Novel Ni/WOX/W Resistive Random Access Memory with Excellent Retention and Low Switching Current," Japanese Journal of Applied Physics, 50, 04DD11 (2011).
    [6] C. H. Cheng, A. Chin, and F. S. Yeh, "Stacked GeO/SrTiOx Resistive Memory with Ultralow Resistance Currents," Applied Physics Letters, 98, 052905 (2011).
    [7] 白中和, "半導體MOS記憶器及其使用技術," 建興出版社, 2001.
    [8] D. J. Seong, M. Jo, D. Lee, and H. Hwang, "HPHA Effect on Reversible Resistive Switching of Pt/Nb-Doped SrTiO3 Schottky Junction for Nonvolatile Memory Application," Electrochemical and Solid-State Letters, 10, H168 (2007).
    [9] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters, 85, 4073 (2004).
    [10] S. B. Lee, J. S. Lee, S. H. Chang, H. K. Yoo, B. S. Kang, B. Kahng, M. J. Lee, C. J. Kim, and T. W. Noh, "Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching," Applied Physics Letters, 98, 033502 (2011).
    [11] H. H. Huang, W. C. Shih, and C. H. Lai, "Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device," Applied Physics Letters, 96, 193505 (2010).
    [12] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, 21, 2632 (2009).
    [13] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Materials, 6, 833 (2007).
    [14] C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction," IEEE International Electron Devices Meeting, p. 1, (2008)
    [15] D. Ielmini, C. Cagli, and F. Nardi, "Resistance transition in metal oxides induced by electronic threshold switching," Applied Physics Letters, 94, 063511 (2009).
    [16] W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, "On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt," Applied Physics Letters, 93, (2008).
    [17] J. D. McBrayer, R. M. Swanson, and T. W. Sigmon, "Diffusion of Metals in Silicon Dioxide," Journal of The Electrochemical Society, 133, 1242 (1986).
    [18] Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application," Nano Letters, 9, 1636 (2009).
    [19] N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Hasegawa, and M. Aono, "Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch," IEEE Transactions on Electron Devices, 55, 3283 (2008).
    [20] J. Nowotny, M. Radecka, and M. Rekas, "Semiconducting properties of undoped TiO2," Journal of Physics and Chemistry of Solids, 58, 927 (1997).
    [21] H. Miyaoka, G. Mizutani, H. Sano, M. Omote, K. Nakatsuji, and F. Komori, "Anomalous electro-migration of oxygen vacancies in reduced TiO2," Solid State Communications, 123, 399 (2002).
    [22] D. W. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory," Nature Nanotechnology, 5, 148 (2010).
    [23] J. W. Park, M. K. Yang, and J. K. Lee, "Electrode dependence of bipolar resistive switching in SrZrO3 : Cr perovskite film-based memory devices," Electrochemical and Solid State Letters, 11, H226 (2008).
    [24] N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yu, "Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories," Applied Physics Letters, 92, 232112 (2008).
    [25] M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, "Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory," Advanced Materials, 19, 2232 (2007).
    [26] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu, S. M. Sze, and M. J. Tsai, "Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films," Applied Physics Letters, 96, 262110 (2010).
    [27] B. J. Clark and J. M. Morriss, "Fundamental of Ceramics," McGraw-Hill, Singapore, 1997.
    [28] R. J. D. Tilley, "Defect crystal chemistry," Chapman and Hall, New York, 1997.
    [29] T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics Letters, 86, 012107 (2005).
    [30] S. Asanuma, H. Akoh, H. Yamada, and A. Sawa, "Relationship between resistive switching characteristics and band diagrams of Ti/ Pr1-xCaxMnO3 junctions," Physical Review B, 80, 235113 (2009).
    [31] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, 11, 28 (2008).
    [32] J. J. Yang, M. D. Pickett, X. Li, A. A. OhlbergDouglas, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices," Nature Nanotechnology, 3, 429 (2008).
    [33] K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, "Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide," Applied Physics Letters, 89, 103509 (2006).
    [34] M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee, and Y. Park, "Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory," Nano Letters, 9, 1476 (2009).
    [35] N. Banno, T. Sakamoto, N. Iguchi, M. Matsumoto, H. Imai, T. Ichihashi, S. Fujieda, K. Tanaka, S. Watanabe, S. Yamaguchi, T. Hasegawa, and M. Aono, "Structural characterization of amorphous Ta2O5 and SiO2-Ta2O5 used as solid electrolyte for nonvolatile switches," Applied Physics Letters, 97, 113507 (2010).
    [36] T. Sakamoto, K. Lister, N. Banno, T. Hasegawa, K. Terabe, and M. Aono, "Electronic transport in Ta2O5 resistive switch," Applied Physics Letters, 91, 092110 (2007).
    [37] T. Sakamoto, M. Tada, N. Banno, Y. Tsuji, Y. Saitoh, Y. Yabe, H. Hada, N. Iguchi, and M. Aono, "Nonvolatile solid-electrolyte switch embedded into Cu interconnect," IEEE International Symposium on VLSI Technology, p. 130, (2009)
    [38] T. Gu, T. Tada, and S. Watanabe, "Conductive Path Formation in the Ta2O5 Atomic Switch: First-Principles Analyses," ACS Nano, 4, 6477 (2010).
    [39] T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, "Forming and switching mechanisms of a cation-migration-based oxide resistive memory," Nanotechnology, 21, 425205 (2010).
    [40] T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, "Temperature effects on the switching kinetics of a Cu–Ta2O5 -based atomic switch," Nanotechnology, 22, 254013 (2011).
    [41] Y. C. Yang, C. Chen, F. Zeng, and F. Pan, "Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism," Journal of Applied Physics, 107, 093701 (2010).
    [42] S. Y. Choi, M. K. Yang, S. Kim, and J. K. Lee, "Fully room-temperature-fabricated TiN/TaOx/Pt nonvolatile memory devices," physica status solidi (RRL) – Rapid Research Letters, 4, 359 (2010).
    [43] R. Schmiedl, V. Demuth, P. Lahnor, H. Godehardt, Y. Bodschwinna, C. Harder, L. Hammer, H. P. Strunk, M. Schulz, and K. Heinz, "Oxygen diffusion through thin Pt films on Si(100)," Applied Physics A, 62, 223 (1996).
    [44] Z. Lijie, H. Ru, G. Dejin, P. Yue, Q. Shiqiang, Y. Zhe, S. Congyin, and W. Yangyuan, "Thermally stable TaOx-based resistive memory with TiN electrode for MLC application," IEEE International Conference on Solid-State and Integrated Circuit Technology, p. 1160, (2010)
    [45] Z. Lijie, H. Ru, Z. Minghao, Q. Shiqiang, K. Yongbian, G. Dejin, S. Congyin, and W. Yangyuan, "Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering," IEEE Electron Device Letters, 31, 966 (2010).
    [46] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, K. Horiba, H. Kumigashira, and M. Oshima, "Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism," Electron Devices Meeting, 2008. IEDM 2008. IEEE International, p. 1, (2008)
    [47] L. Chang Bum, L. Dong Soo, A. Benayad, L. Seung Ryul, C. Man, L. Myoung-Jae, H. Jihyun, K. Chang Jung, and U. I. Chung, "Highly Uniform Switching of Tantalum Embedded Amorphous Oxide Using Self-Compliance Bipolar Resistive Switching," IEEE Electron Device Letters, 32, 399 (2011).
    [48] J. H. Hur, M. J. Lee, C. B. Lee, Y. B. Kim, and C. J. Kim, "Modeling for bipolar resistive memory switching in transition-metal oxides," Physical Review B, 82, 155321 (2010).
    [49] Y. Sakotsubo, M. Terai, S. Kotsuji, Y. Saito, M. Tada, Y. Yabe, and H. Hada, "A new approach for improving operating margin of unipolar ReRAM using local minimu m of reset voltage," IEEE International Symposium on VLSI Technology, p. 87, (2010)
    [50] M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, "Resistance Controllability of Ta2O5/TiO2 Stack ReRAM for Low-Voltage and Multilevel Operation," IEEE Electron Device Letters, 31, 204 (2010).
    [51] M. Terai, Y. Sakotsubo, Y. Saito, S. Kotsuji, and H. Hada, "Effect of bottom electrode of ReRAM with Ta2O5/TiO2 stack on RTN and retention," IEEE International Electron Devices Meeting, p. 1, (2009)
    [52] J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, and R. S. Williams, "High switching endurance in TaOx memristive devices," Applied Physics Letters, 97, 232102 (2010).
    [53] S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices," Wiley, New Jersey, 2007.
    [54] C. W. Jae, I. Akio, F. Hideki, T. Tsuyoshi, K. J. N., H. Michikazu, K. Maki, M. Yasumichi, and D. Kazunari, "Conduction and Valence Band Positions of Ta2O5, TaON, and Ta3N5 by UPS and Electrochemical Methods," The Journal of Physical Chemistry B, 107, 1798 (2003).
    [55] H. Shin, S. Y. Park, S. T. Bae, S. Lee, K. S. Hong, and H. S. Jung, "Defect energy levels in Ta2O5 and nitrogen-doped Ta2O5," Journal of Applied Physics, 104, 116108 (2008).
    [56] S. Lee, H. Na, J. Kim, J. Moon, and H. Sohn, "Anion-Migration-Induced Bipolar Resistance Switching in Electrochemically Deposited TiOx Films," Journal of The Electrochemical Society, 158, H88 (2011).
    [57] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, "Handbook of X-ray photoelectron spectroscopy : a reference book of standard spectra for identification and interpretation of XPS data," Physial Electronics Inc., Minnesota, 1995.
    [58] H. Demiryont, J. R. Sites, and K. Geib, "Effects of oxygen content on the optical properties of tantalum oxide films deposited by ion-beam sputtering," Applied Optics, 24, 490 (1985).
    [59] O. Kerrec, D. Devilliers, H. Groult, and P. Marcus, "Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS," Materials Science and Engineering B, 55, 134 (1998).

    下載圖示 校內:2016-08-18公開
    校外:2016-08-18公開
    QR CODE