簡易檢索 / 詳目顯示

研究生: 曾涵渝
Tseng, Han-Yu
論文名稱: 標準與差分量度之球體解碼研究
On the Sphere Decoding with Differential and Non-Differential Metrics
指導教授: 張名先
Chang, Ming-Xian
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 38
中文關鍵詞: 多重輸入多重輸出球體解碼球體半徑樹狀搜尋
外文關鍵詞: MIMO, sphere decoding, sphere radius, tree search
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球體解碼演算法能有效率地實作出高維度多重輸入多重輸出的最大概似解(ML)。在本篇論文中,我們比較了標準的球體解碼與使用差分量度的球體解碼,並且考慮在深度優先搜尋與寬度優先搜尋的條件。
    使用差分量度的球體解碼能夠快速地縮小球體解碼的搜尋半徑,但我們需要多餘的事前運算才能夠使用差分量度縮小搜尋半徑。然而在非時變通道或是通道變化較慢的情況下,我們可以減少使用差分量度球體解碼的事前運算量。我們比較標準球體解碼與差分量度球體解碼的拜訪點數,再各自與寬度優先搜尋與深度優先搜尋做比較,最後得到深度優先搜尋為最少拜訪點數的搜尋方式。此外,我們限制了寬度優先搜尋所使用的記憶體大小,此方法下,較低訊雜比能夠降低所需要的拜訪點數,而且能夠接近絕對ML的錯誤率。

    Sphere decoding algorithm can efficiently implement the maximum likelihood (ML) detection of the high-dimensional multiple-input multiple-output (MIMO) maximum likelihood (ML) system. In this thesis, we study the sphere decoding with standard and differential metrics. We consider both depth-first search and breadth-first search in the tree search of the sphere decoding.
    The sphere decoding with differential metrics can update the radius more quickly. However, with the use of differential metric we need more calculations before the tree search. When the channel is time-invariant or slowly time-varying, we can reduce the advance calculations for the sphere decoding with differential metrics. We compare the visited nodes of the sphere decoding with standard and differential metrics, respectively, with depth-first search and breadth-first search. We find that the breadth-first search is the scheme attains fewer visited nodes. We also consider the scheme with limited memory for the breadth-first search, which attains close bit-error rate performance near the exact ML scheme with reduced visited nodes at lower signal-to-noise ratio (SNR).

    Contents 中文摘要 I Abstract II 誌謝 III Contents IV List of Figures VI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the thesis 2 Chapter 2 Decoding algorithm for MIMO system 3 2.1 System model 3 2.2 Maximum likelihood detection 4 2.3 Zero-forcing detection 4 2.4 Minimum mean square error detection 5 Chapter 3 Introduction to sphere decoding 8 3.1 Sphere decoding 8 3.2 Tree search for sphere decoding 13 3.2.1 Blind depth-first search 13 3.2.2 Depth-first search 14 3.2.3 Breadth-first search 16 3.3 Simulation result 18 Chapter 4 Visited nodes research for exact ML 22 4.1 Differential metric 22 4.1.1 Introduction to differential metric 22 4.1.2 Differential metric with tree search 26 4.1.3 Pre-calculation for differential metric 27 4.1.4 Simulation result 29 4.2 Initial radius 32 4.3 Limited memory stack 34 Chapter 5 Conclusions 36 Reference 37

    [1]. G. J. Foschini and M. J. Gans. On limits of wireless communications in a fading environmentwhen using multiple antennas. Wirel. Pers. Commun., 6:311–335, 1998.
    [2]. S.M. Alamouti. A simple transmit diversity technique for wireless communication. IEEE J. Select Areas Comm., 16:1451–1458, 1998.
    [3]. S. Da-shan P.J. Smith D. Gesbert, M. Shafi and A. Naguib. From theory to practice: an overview of mimio space-time coded wireless systems. IEEE J. Select Areas Comm., 21:281–302, 2003.
    [4]. Y. Huang J. Benesty and J. Chen. A fast recursive algorithm for optimum sequen- tial signal detection in blast system. IEEE Trans. Signal Process., 51:1722–1731, 2003.
    [5]. H. El Gamal M. O. Damen and G. Caire. On maximum-likelihood detection and the search for the closest lattice point. IEEE Trans. Inf. Theory, 49:2389–2402, 2003.
    [6]. B. Hassibi and H. Vikalo. On the sphere-decoding algorithm i. expected complexity. IEEE Trans. Signal Process., 53:2806–2818, 2005.
    [7]. E. Viterbo and J. Boutros. A universal lattice code decoder for fading channels. IEEE Trans. Inform. Theory, 45:1639–1642, 1999.
    [8]. G. Rekaya and J. Belfiore. On the complexity of ml lattice decoders for decoding linear full rate space-time codes. In IEEE International Symposium on Information Theory, pages 206 – 206, 2003.
    [9]. W. Zhao and G. Giannakis. Sphere decoding algorithms with improved radius search. IEEE Trans. Commun., 53:1104–1109, July 2005.

    下載圖示 校內:2014-08-19公開
    校外:2014-08-19公開
    QR CODE