| 研究生: |
張正道 Chang, Chung-Tao |
|---|---|
| 論文名稱: |
非線性系統管限追蹤H∞控制器之設計研究 A Study on H∞ Controller Design for Nonlinear System of Tracking Behavior in the Sense of Input-Output Spheres |
| 指導教授: |
黃正能
Hwang, Cheng-Neng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 不確定性 、不確定輸入 、H∞控制 、輸入輸出管限 |
| 外文關鍵詞: | input-output spheres, uncertainty, uncertain input, H∞ control |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
某些非線性動力系統中都含有未知的元素諸如未知系統參數(unknown parameter)或系統內部改變的不確定性(uncertainty),此因素很可能造成控制系統的工作性能下降,甚至造成閉迴路系統不穩定。除了不確定性因素外,我們尚考量隨時間變動的不確定輸入(uncertain input)的影響,對於此系統的不確定輸入因素會造成系統不確定輸出,而此類輸入和輸出會在一些區域上變動,這使得針對系統追蹤性能的目標不易達成。
因此,本文將針對非線性系統,設計一個非線性管限追蹤H∞控制器:利用非線性系統的管限理論,結合H∞控制器配合選擇權重函數的迴路整型方法,提昇系統對外來干擾及系統內部不確定性之強健性,並保有優越輸入輸出的管限能力。
最後,本文針對線性直流馬達系統及非線性倒單擺系統作為電腦模擬控制對象,來驗證所設計之輸入輸出管限追蹤H∞控制器之可行性,經由模擬結果顯示均可達到管限追蹤目的,證明確實能使系統有良好的追蹤性能,並能有效降低外來干擾及輸入不確定因素的影響。
A nonlinear dynamic system usually contains some uncertainties, such as unknown system parameters or uncertainties, which may make desired performance hard to be achieved or even cause the close-loop system unstable. Uncertain inputs of the system will give the system uncertain outputs although these inputs and outputs may be bounded in some neighborhoods, yet these uncertainties may make the objective of tracking performance hard to be achieved.
An H∞ control design of system tracking behavior in the sense of input-output spheres is proposed in this paper to ensure the system outputs are bounded in the desired output spheres while the uncertain system inputs are prescribed in input spheres. The loop-shaping technique is applied in the proposed design procedure to guarantee the system robustness against disturbances and uncertainties.
A DC-motor and a nonlinear inverted pendulum are studied as examples in this research to attest the feasibility of the proposed H∞ control design, which will guarantee the tracking behavior in the sense of input-output spheres. The computer simulation results reveal that the designed H∞ controllers in these two examples can achieve the desired objectives with good tracking performance by effectively rejecting the system disturbances and uncertainties in both systems.
[1]Arch W, Naylor & George R, Shell, ”Linear Operator Theory in Engineeringand Science,” Spinger-Verlag, New York, 1982.
[2]Barmish, B.R., and Leitmann, G., "On Ultimate Boundedness of Uncertain Systems in the Absence of Matching Conditions," IEEE Transactions on
Automatic control, Vol.27, No.1, pp.153-158,1982.
[3]Barmish, B.R., "Fundamental Issues in Guidance and Control of Uncertain Systems," Proceedings of 1982 American Control Conference, Arlington, V.A., 1982.
[4]Barmish, B.R., et. al., "A New Class of Stabilizing Controllers for Uncertain Dynamical Systems," SIAM Journal of Control and Optimum, Vol.21, No.2, pp.246-255, 1983.
[5]Corless, M. and Leitmann, G., "Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems," IEEE
Transactions on Automatic Control, Vol.26, No.5, pp.1139-1144, 1981.
[6]C.N. Hwang, "非線性系統之最佳綜合控制設計", 國科會專題研究報告, NSC 81-0404-E-006-007, July 1992。
[7]C.N. Hwang, “Formulation of H2 and H∞ Optimal Control Problems – A Variational Approach,” Journal of the Chinese Institute of Engineering's, Vol. 16, No. 6, pp.853-866, 1993.
[8]Doyle, J.C.,Glover, K., Khargonekar, P.P. and Francis, B.A., “State-Space Solutions to Standard H2 and H∞ Control Problems,” IEEE Transactions on Automatic Control, Vol. 34, No.8, pp.831-847, 1989.
[9]Horowitz, I.M., "Optimum Linear Adaptive Design of Dominate-Type Systems with Large Parameter Variations," IEEE Transactions on Automatic Control, Vol.AC-14, No.3, pp.261-269, 1969.
[10]Horowitz, I.M., "Synthesis of Feedback Systems with Nonlinear Time-Varying Uncertain Plants to Satisfy Quantitative Performance Specifications," IEEE Proceedings, Vol.64, No.1, pp.123-130, 1976.
[11]Jayasuriya, S., "Stability and Tracking in Uncertain Nonlinear Systems," PH.D. Dissertation, Wayne State University, Detroit, MI, 1982.
[12]Jayasuriya, S., and Rabins, M.J., and Barnard, B.D., "Guaranteed Tracking Behavior in the Sense of Input-Output for Systems with Uncertain Parameters," Journal of Dynamic Systems, Measurement and Control, Vol.106, No.1, pp.273-279, 1984.
[13]Katsuhiko Ogata, “Modern Control Engineering,” Fourth Edition, Prentice Hall, New Jersey, 2002.
[14]Leitmann, G., "Guranteed Asymptotic Stability for Some Linear Systems with Bounded Uncertainties," Journal of Dynamic Systems, Measurement andControl, Vol.101, No.3, pp.212-217, 1979.
[15]Leitmann, G., "On the Efficacy of Nonlinear Control in Uncertain Linear Systems," Journal of Dynamic systems, Measurement and Control, Vol.103, No.1, pp.95-102, 1981.
[16]Schweppe F.C., "Uncertain Dynamic Systems," Prentice-Hall, Englewood Cliffs, New Jersey, 1973.
[17]Usoro, P.B., et al., "Ellipsoidal Set-Theoretic Control synthesis," Journal of Dynamic systems, Measurement and Control, Vol.104, No.4 , pp.125-135, 1982.
[18]Zames, G., "Feedback and Optimal Sensitivity:Model Refernce Transformations, Multiplicative Seminorms, and Approximate Inverses," IEEE Transactions on Automatic Control, Vol.AC-26, No.2, pp.301-320, 1981.
[19]Zames, G., "On H∞ Optimal Sensitivity Theory for SISO Feedback Systems," IEEE Transactions on Automatic Control, Vol.AC-29, No.1, pp.9-16, 1984.
[20]楊憲東、葉芳柏,”線性與非線性H∞控制理論”,全華科技圖書股份有限公司,1997。
[21]詹國琴、黃正能,”非線性系統之H∞控制器設計及迴路整型”,國立成功大學造船暨船舶機械工程研究所碩士論文,1999。