| 研究生: |
馬敬堯 Ma, Jing-Yao |
|---|---|
| 論文名稱: |
鹽類對含偶氮苯兩性雙團聯共聚物之光應答和螢光性質之研究 Salt Addition on Photoresponsive Properties and Fluorescence of Azobenzene-Containing Amphiphilic Diblock Copolymers |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 雙團聯共聚物 、偶氮苯 、微胞 、鹽類 、螢光 |
| 外文關鍵詞: | block copolymer, azobenzene, micelle, salt, fluorescence |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究合成具有光異構化特性之偶氮苯單體,再以原子轉移自由基聚合法製備一系列含不同偶氮苯鏈段比之雙團聯共聚物poly(ethylene glycol)methylether-block-poly(6-[4-(4'-methoxyphenyl azo)phenoxy]hexylmethacrylate) (PEG-b-PAzo),並利用小角度中子散射觀察其在混合溶液中結構的變化。PEG-b-PAzo於中性溶劑(DMF)中為random coil結構,當選擇性溶劑(H2O)加入時則會形成具核殼之微胞結構,且隨著混合溶液中水的比例增加,核之半徑會因為水與疏水端鏈段間的界面張力而變大,殼之厚度則隨之減少。
PEG-b-PAzo具有偶氮苯分子之光異構化特性,經紫外光照射後會由反式異構物變為順式異構物,在照射可見光後可誘發逆反應。利用紫外光-可見光分光光譜儀分析PEG-b-PAzo於混合溶劑中之光應答行為。在中性溶劑中,偶氮苯分子聚集型態以nonassociation為主;在選擇性溶劑中則因微胞形成,其聚集型態以H-aggregate為主。偶氮苯分子之光異構化速率在選擇性溶劑中相較於其在中性溶劑中慢,這是由於微胞的形成使PAzo鏈段產生聚集,阻礙了偶氮苯分子進行光異構化之旋轉與反轉機制,導致光異構化速率下降。此外,不同偶氮苯鏈段比之團聯共聚物的光異構化表現亦不相同,高偶氮苯鏈段比之團聯共聚物較容易受到溶液的選擇性影響而改變偶氮苯分子排列型態,導致光異構化速率隨著偶氮苯鏈段比增加而變慢。
PEG-b-PAzo亦具有偶氮笨分子之螢光特性,PEG-b-PAzo之螢光強度會隨著溶劑選擇增加而下降,這是由於偶氮苯分子在選擇性溶劑中傾向低螢光放射強度之H-aggregate型態所致。在照射紫外光後,PEG-b-PAzo於各溶劑中之螢光放射強度皆下降,這是由於經紫外光照射後,微胞之核變大,使偶氮苯分子進行快速的非放射性鬆弛之機率增加,導致螢光強度減弱。此外,隨著溶劑極性的增加,螢光強度亦會減弱,且發生紅位移。
本研究亦探討鹽類對於PEG-b-PAzo之結構影響,添加KCl於含PEG-b-PAzo之混合溶液時,KCl會產生鹽析效應,將微胞周圍之溶劑抽離而使殼厚度變小;添加KSCN於含PEG-b-PAzo之混合溶液時,KSCN會產生鹽溶效應,將更多溶劑帶至微胞周圍而使殼厚度變大。同時,鹽類對微胞結構的改變也會對偶氮苯分子之光應答特性產生相對應的影響。螢光強度主要受到偶氮苯聚集型態影響,添加鹽類時,因微胞結構改變使nonassociation比例上升,使螢光強度有所增加。
In this study, we synthesized a series of poly(ethylene glycol) methylether-block-poly(6-[4-(4'-methoxyphenyl azo) hexylmethacrylate) (PEG-b-PAzo) block copolymers, and investigating the relationship the structural changes of PEG-b-PAzo and their photoresponsive properties of azobenzene mesogens. The morphology of PEG-b-PAzo in mixed dimethylformamide (DMF)/H2O solvents was characterized by using small angle neutron scattering. When PEG-b-PAzo was dissolved in a selective solvent (H2O), PEG-b-PAzo assembled into core-corona micelles, with PAzo in the micelle core. Additionally, when the amount of H2O in mixed solvents increased, the radius of core increased, whereas the thickness of the corona decreased. This confinement of azobenzene mesogens in the micelle core hindered rotation and inversion of photoisomerization, thereby the photoisomerization rate of azobenzene mesogens in selective solvents was slower than that in neutral solvents. The fluorescence intensity of PEG-b-PAzo decreased with an increase in the solvent selectivity. Such behavior was associated with the high population of low-emissive H-aggregated azobenzene mesogens in selective solvents.
We also investigated the effect of salt addition (KCl and KSCN) on the structure of PEG-b-PAzo in mixed solvents. The addition of KCl in mixed solvents caused the salting-out effect, thereby dehydrating micelles, resulting in the decrease in the corona thickness. By contrast, the addition of KSCN in mixed solvents induced the salting-in effect, which hydrated micelles, and thereby the corona thickness increased. Additionally, the structural changes of PEG-b-PAzo because of the salt addition simultaneously influenced the photoresponsive properties of azobenzene mesogens. When salt was added to the solvent, the fluorescence intensity increased, which was associated with an increase in the population of high-emissive nonassociated azobenzene mesogens.
[1].Y. Morikawa, S. Nagano, K. Watanabe, K. Kamata, T. Iyoda, Optical Alignment Patterning of Nanoscale Microdomains in a Block Copolymer Thing Film, Adv. Mater, Vol.18, 2006, 883-886.
[2]. F. S. Bates, G. H. Fredrickson, Block Copolymers—Designer Soft Materials, Phys. Today 52, Vol.32, 1999, 34-37.
[3]. F. S. Bates, G. H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment, Annu. Rev. Phys. Chem, Vol.41, 1990, 527.
[4]. 程娟、凌秀君、張振國、卓仁禧、鍾振林,兩親性樹狀接枝己內酯共聚物的合成與表徵, 高分子學報, 第四期,2014, 442.
[5]. K. Mortensen, Structural studies of aqueous solutions of PEO - PPO - PEO triblock copolymers, their micellar aggregates and mesophases; a small-angle neutron scattering study, Condens, J. Phys, 1996.
[6]. S. Shaikh, D. Ray, V. K. Aswal, J Surfact Deterg, Vol.20, 2017, 695.
[7]. H. Bagger, U. Olsson, K. Mortensen, Microstructure in a Ternary Microemulsion Studied by Small Angle Neutron Scattering, Langmuir, Vol.115, 1995, 1468-1476.
[8]. X. L. Lin, J. Xu, W. G. Hou, D. J. Sun, Effect of additives on the cloud points of two triblock copolymers in aqueous solution, Colloids Surf. A, Vol.237, 2004, 1-6.
[9]. K. Pandya, K. Lad, P. Bahadur, Micellar and solubilizing behavior of Pluronic L-64 in water, J. Macromol. Sci., Vol.70, 1993, 219-227.
[10]. W. H. Zhang, L. Zhang, J. Xiu, Z. Shen, Y. Li, P. Ying, C. Li, Pore size design of ordered mesoporous silicas by controlling micellar properties of triblock copolymer EO20PO70EO20, Microporous and Mesoporous Materials, Vol.89, 2006, 179-185.
[11]. G. Grundl, M. Müller, D. Touraud. W. Kunz, Salting-out and salting-in effects of organic compounds and applications of the salting-out effect of Pentasodium phytate in different extraction processes, Journal of Molecular Liquids, Vol.236, 2017, 368-375.
[12]. V. K. Aswal, P. S. Goyal, J. Kohlbrechera, P. Bahadur, SANS study of salt induced micellization in PEO–PPO–PEO block copolymers, Chemical Physics Letters, Vol.349, Issues 5–6, 2001, 458-462.
[13]. S. Pandit, T. Trygstad, S. Croy, M. Bohorquezyand, C. Kochy, Effect of Salts on the Micellization, Clouding, and Solubilization Behavior of Pluronic F127 Solutions, Journal of Colloid and Interface, Vol.222, 2000, 213-220.
[14]. N. JJain, V. KAswal, P. SGoyal, P. Bahadur, Salt induced micellization and micelle structures of' PEO/PPO/PEO block copolymers in aqueous solution, Colloids and Surfaces , Physicochemical and Engineering Aspects, Vol.173, Issues 1–3, 2000, 85-94.
[15]. K. Patel, P. Bahadur, C. Guo, J. H. Ma, H. Z. Liu, K. Nakashima, Salt-Induced Micellization of Pluronic F88 in Water, Journal of Dispersion Science and Technology, Vol.29, 2008, 748-755.
[16]. Y. l. Su, H. Z. Liu, J. Wang, J. Y. Chen, Study of Salt Effects on the Micellization of PEO−PPO−PEO Block Copolymer in Aqueous Solution by FTIR Spectroscopy, Langmuir, Vol.18, Issue 3, 2002, 865-871.
[17]. N. J. Jain, V. K. Aswal, P. S. Goyal, P. Bahadur, Micellar Structure of an Ethylene Oxide-Propylene Oxide Block Copolymers: A Small Angle Neutron Scattering Study, J. Phys. Chem. B, Vol.102, 1998, 8452-8458
[18]. R. Ganguly, V. K. Aswal, P. A. Hassan, Room temperature sphere-to-rod growth and gelation of PEO-PPO-PEO triblock copolymers in aqueous salt solutions, Journal of Colloid and Interface Science, Vol.315, 2007, 693-700.
[19]. H. Schott, A. E. Royce, S. K. Han, Effect of inorganic Additives on Solutions of Nonionic Surfactants, Journal of Colloid and Interface Science, Vol.98, 1984.
[20]. N. L. Albert, T. H. Epps III, Self-assembly of block copolymer thin films, Materialstoday, Vol.13, issue 6, 2010, 24-33.
[21].塊狀共聚物薄膜:自聚合的新材料,陳宣毅,物理雙月刊(廿四卷二期),2002 ,343-345。
[22]. H. Wang、A. B. Djurisic、 M. H. Xie、 W. K. Chan、O. Kutsay, Perpendicular domains in poly(styrene-b-methyl methacrylate) block copolymer films on preferential surfaces, Thin Solid Films, Vol.488, 2005, 329-336.
[23]. M. Luo, T. H. Epps III, Directed Block Copolymer Thin Film Self-Assembly: Emerging Trends in Nanopattern Fabrication, Macromolecules, Vol.46, Issue 19, 2013, 7567-7569.
[24]. J. H. Liu, Y. H. Chiu, Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments, Journal of Polymer Science: Part A: Polymer Chmistry, Vol.48, issue 5, 2010, 1142-1148.
[25]. A. W. Harant, Solvent vapor annealed block copolymer films on organosilane self-assembled monolayers, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2005 .
[26]. Y. Xuan, J. Peng, L. Cui, H. Wang, Morphology development of ultrathin symmetric diblock copolymer film via solvent vapor treatment, Macromolecules, Vol. 37, 2004, 7301-7307.
[27]. T. G. Fox, P. J. Flory, Second‐Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight, J. Appl. Phys, Vol.21, 1950, 581.
[28]. K. G. Yager, C. J. Barrett, Azobenzene polymers for photonic applications. Smart Light-Responsive Materials. John Wiley & Sons, Inc, 2008, 1-46.
[29]. 王羅新、王曉工, 偶氮苯順反異構化機理研究進展, 化學通報, 2008, 1-3.
[30]. H. M. Dhammika Bandara, S. C. Burdette, Photoisomerization in different classes of azobenzene, Chem Soc Rev, Vol.41, 2012, 1810.
[31]. A. Airine, E. Rusu, V. Barboiu, Responsive behavior of 4-(N-maleimido)azobenzene in polymers with aromatic main chain and side chain linked units,J. Braz, Chem. Soc, Vol.21, 2010, 490-495.
[32]. H. Yu, T. Kobayashi, Photoresponsive block copolymers containing azobenzenes and other chromophores, Molecules, Vol. 15, 2010, 574-576.
[33]. H. Meng, H. Mohamadian, M. Stubblefield, D. Jerro, S. Ibekwe, S. Pang , G. Li, Various shape memory effects of stimuli-responsive shape memory polymers, Smart Materials and Structures , Vol.22, 2013, 11.
[34]. H. K. Lee, A. Kanazawa, T. Shiono, T. Ikeda, Chem.Mater, Vol. 10, 1402.
[35]. G. S. Kumar, D. C. Neckers, Photochemistry of azobenzene-containing polymers, Chemical Reviews, Vol. 89, 1915-1989.
[36]. C. Huang、G.Wen 、J. Li 、T.Wu、L. Wang、F. Xue、 H. Li、T. Shi, Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of ultrathin block copolymer films, Journal of Colloid Interface Science, 2016, Vol.478, 236-245.
[37]. A. Sharma, R. Khanna, Pattern Formation in Unstable Thin Liquid Films, Phys. Rev. Lett, 1998, Vol.81, 3463-3466.
[38]. T. G. Fox and B. Am, Phys. Soc. 1956, Vol.1, 123.
[39]. Y. Xu, Novel azobenzene-based amphiphilic copolymers: Synthesis, self-assembly behavior and multiple-stimuli-responsive properties, RSC, Vol. 8, 2018, 17878
[40]. Macromolecules, Vol. 37, 2004 , 3101-3112.
[41]. H. Menzel, B. Weichart, A. Schmidt, S. Paul, W. Knoll, J.Stumpe, T. Fischer, Small-Angle X-ray Scattering and Ultraviolet-Visible Spectroscopy Studies on the Structure and Structural Changes in Langmuir-Blodgett Films of Polyglutamates with Azobenzene Moieties Tethered by Alkyl Spacers of Different Length, Langmuir, Vol.10, 1994, 1926-1933.
[42]. M. Shimizu, T. Hiyama, Organic Fluorophores Exhibiting Highly Efficient Photoluminescence in the Solid State, Chemistry-An Asain Journal, Vol. 5, 2010, 1516-1531.
[43]. T. Seki, Photoresponsive self-assembly motions in polymer thin films, Current Opinion in Solid State and Materials Science, Vol.10, 2006, 241-248.
[44]. S. Kadota, K. Aoki, S. Nagano, T. Seki, Photocontrolled Microphase Separation of Block Copolymers in Two Dimensions, J. AM. CHEM. SOC, Vol.127, 2005, 8266-8267.
[45]. H. Yu, T. Iyoda, T. Ikeda, Photoinduced Alignment of Nanocylinders by Supramolecular Cooperative Motions, J. AM. CHEM. SOC, Vol.128, 2006, 11010-11011.
[46]. M. Z. Alam, A. Shibahara, T. Ogata, S. Kurihara, Synthesis of azobenzene-functionalized star polymers via RAFT and their photoresponsive properties, Polymer, Vol.52, 2011, 3696-3703.
[47]. Y. Tian, K. Watanabe, X. Kong, J. Abe, T. Iyoda, Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties, Macromolecules, Vol.35, 2002, 3739-3747.
[48]. H. Yu, T. Kobayashi, G. H. Hu, Photocontrolled microphase separation in a nematic liquid-crystilline diblock copolymer, Polymer, Vol.52, 2011, 1554-1561.
[49]. M. Miyazaki, A. Fuji, T. Ebata, N. Mikami, Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages, Science, Vol.304, 2004, 1134-1138.
[50.]. K. A. Davis, K. Matyjaszewski, Atom transfer radical polymerization of tert-butyl acrylate and preparation of block copolymers, Macromolecular, Vol.33, 2000, 4039-4047.
[51]. V. Bertolasi, P. Gilli, V. Ferretti, G. Gilli, Intramolecular O-H...O hydrogen bonds assisted by resonance. Correlation between crystallographic data and 1H NMR chemical shifts, Journal of the Chemical Society, Vol.2, 1997, 945-952.
[52]. Y. Xiang, X. Xue, J. Zhu, Z. Zhang, W. Zhang, N. Zhou, Fluorescence behavior of an azobenzene-containing amphiphilic diblock copolymer, Polymer Chemistry, Vol.1, 2010, 1453-1458.
[53]. M. R. Han, Y. Hirayama, M. Hara, Fluorescence enhancement from self-assembled aggregates substituent effects on self-assembly of azobenzenes, Chemistry of Materials, Vol.18, 2006, 2784-2786.
[54]. Wayback Machine, Macro.lsu.edu, 2013.
[55]. E. Stefanis, C. Panayiotou, Prediction of Hansen solubility parameters with a new group-contribution method, International Journal of Thermophysics, Vol.29, 2008, 568-585.
[56]. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, Polymer handbook, Vol.89, 1999.
[57]. B. Hammouda, D. L. Ho, S. Kline, Insight into clustering in poly(ethylene oxide) solutions, Macromolecules, Vol.37, 2004, 6932-6937.
[58]. J. S. Pedersen, Form factors of block copolymer micelles with spherical,ellipsoidal and cylindrical cores, Journal of Applied Crystallography, Vol.33, 2000, 637-640.
[59]. J. Eastoe, New physico-chemical techniques for the characterisation of complex food systems, Blackie, 1995, 268-294.
[60]. R. Yang, S. He, Q. Hu, M. Sun, D. Hu, J. Yi, Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale, Sichuan Basin, Fuel, Vol.197, 2017, 91-99.
[61]. E. Merino, M. Ribagorda, Control over molecular motion using the cis-trans photoisomerization of the azo group, Beilstein Journal of Organic Chemistry, Vol.8, 2012, 1071-1090.
[62]. V. V. Jerca, F. A. Jerca, I. Rau, A. M. Manea, D. M. Vuluga, F. Kajzar, Advances in understanding the photoresponsive behavior of azobenzenes substituted with strong electron withdrawing groups, Optical Materials, Vol.48, 2015, 160-164.
[63]. Z. F. Liu, K. Morigaki, T. Enomoto, K. Hashimoto, A. Fujishima, Kinetic studies on the thermal cis-trans isomerization of azo compound in the assembled monolayer film, The Journal of Physical Chemistry, Vol.96, 1992, 1875-1880.
[64]. Q. Bo, Y. Zhao, Fluorescence from an azobenzene-containing diblock copolymer micelle in solution, Langmuir, Vol.23, 2007, 5746-5751.
[65]. M. Homocianu, A. Airinei, D. O. Dorohoi, Solvent effects on the elcetromic absorption and fluorescence spectra, Journal of Advanced Research in Physics, Vol.2, 2011, 011-015.
[66]. F. Ma, N. Zhou, J.Zhu, W. Zhang, L. Fan, X. Zhu, Light-driven fluorescence enhancement of phenylazo indazole-terminated polystyrene, European Polymer Journal, Vol.45, 2009, 2131-2137.
[67]. L. Shi, X. Ran, Y. Li, W. Qiu, L. Guo, Photoresponsive structure transformation and emission enhancement based on a tapered azobenzene gelator, RSC Advance , Vol.5, 2015, 38283.
[68]. X. Ran, H. Wang, L. Shi, J. Lou, B. Liu, M. Li, L.Guo, Light-driven fluorescence enhancement and self-assembled structural evolution of an azobenzene derivative, Journal of Materials Chemistry C, Vol.2, 2014. 9866.
[69]. S. Forster, N. Hermsdorf, Structure of polyelectrolyte block copolymer micelles, Macromolecules, Vol.35, 2002, 4096-4105.
[70]. B. Herman, J. R. Lakowicz, I. D. Johnson, Solvent Effects on Fluorescence Emission, Java Tutorial.
[71]. X. He, H. Zhang, X. Wang, Synthesis of side chain liquid crystal-coil diblock copolymers with p-methoxyazobenzene sidr groups by atom-transfer radical polymerization, Polymer Journal, Vol.34, 2002, 523-528.
[72]. R. Lund, L. Willner, J. Stellbrink, A. Radulescu, D.Richter, Role of surface tension for the structrure of PEP-PEO polymeric micelles.A combined SANS and pendant drop tensiometry investigation, Macromolecules, Vol.37, 2004, 9984-9993.
[73]. Y. S. Seo, M. W. Kim, D. H. Ou-Yang, D. G. Peiffer, Effect of interfacial tension on micellization of a polystyrene-poly(ethylele oxide) diblock copolymer in a mixed solvent system, Polymer, Vol.43, 2002, 5629-5638.
[74]. P. Alexandridis, L. Yang, SANS investigation of polyether block copolymer micelle structure in mixed solvents of water and formamide, ethanol, or glycerol, Macromolecules, Vol.33, 2000, 5574-5587.
[75]. B. Nie, J. Stutzman, A .Xie, A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues, Biophysical Journal, Vol.88, 2005, 2833-2847.
[76]. C. M. Hansen, A. L. Smith, Using Hanesn solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers, Carbon, Vol.42, 2004, 1591-1597.
[77]. J. Gao, S. Wu, A. Rogers, Harnessing Hansen solubility parameters to predict organogel formation, J. Mater. Chem., Vol.22, 2012, 12651.
[78]. P. Alexandridis, L. Yang, SANS Investigation of Polyether Block Copolymer Micelle Structure in Mixed Solvents of Water and Formamide, Ethanol, or Glycerol, Macromolecules, Vol.33, 2000, 5574-5587.
[79]. M. Akamatsu, P. A. FitzGerald, M. Shiina, T. Misono, K. Tsuchiya, K. Sakai, M. Abe, G. G. Warr, H. Sakai, Micelle Structure in a Photoresponsive Surfactant with and without Solubilized Ethylbenzene from Small-Angle Neutron Scattering, J. Phys. Chem. B, Vol.119, 2015, 5904-5910.
[80]. 林彥均 (2018)。含偶氮苯兩性雙團聯共聚物於溶液和薄膜中之構型及液晶基元之聚集型態的研究。國立成功大學化學工程所碩士論文,台南市。取自https://hdl.handle.net/11296/9zt5c3。
[81]. 黃品綺 (2017)。含偶氮苯雙團聯共聚物之結構及光應答行為之研究。國立成功大學化學工程所碩士論文,台南市。取自https://hdl.handle.net/11296/557my6。
[82]. 張建煌 (2016)。含偶氮苯兩性雙團聯共聚物之混摻物之光應答行為和螢光的研究。國立成功大學化學工程所碩士論文,台南市。取自https://hdl.handle.net/11296/df379j。
[83]. Q. Bo, Y. Zhao, Fluorescence from an Azobenzene-Containing Diblock Copolymer Micelle in Solution , Langmuir, Vol.23, 2007, 5746-5751.
[84]. 吳宇森 (2019)。含偶氮苯三團聯共聚物於鹽類溶液中之光應答行為與結構之研究。國立成功大學化學工程所碩士論文,台南市。取自https://hdl.handle.net/11296/fg8wd5。
[85]. A.Papagiannopoulos, M.Karayianni, G. Mountrichas, S. Pispas, A. Radulescu, Micellar and fractal aggregates formed by two triblock terpolymers with different arrangements of one charged, one neutral hydrophilic and one hydrophobic block, Polymer, Vol.63, 2015, 134-143.