簡易檢索 / 詳目顯示

研究生: 林雪楨
Lin, Hsueh-chen
論文名稱: 多點亞式重設選擇權的評價
Valuation of Multiple Asian Reset Options
指導教授: 王明隆
Wang, Ming-long
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 85
中文關鍵詞: 格林函數遞迴積分法幾何平均多點重設權擇權
外文關鍵詞: multiple reset options, geometric average, recursive integral method, Green's function
相關次數: 點閱:67下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亞式重設選擇權(Asian reset option)為重設選擇權的一種,可在契約期間內達重設標準後改變其履約價格,與標準重設選擇權(重設日單一收盤價)的差別在於亞式是使用重設期間的股價平均作為標的價格,而非使用重設日的單一股價作為重設的比較依據,國內目前發行的重設型認購(售)權證即屬此類。所以,若市場處於多空不明時,使用重設期間的平均價格作為依據,可避免重設日單一股價易為人為操縱的問題,此條款可使履約價與市場情況作調整,並給予持有者一定程度的保護,對於較不成熟的金融市場而言極為實用。另外,由於各個重設期間標的資產的履約價彼此會有相關性,一旦執行重設條款,會影響選擇權價格,所以重設選擇權可視為路徑相依選擇權(Path-dependent option)的一種。
    本研究採用一般化的重設條款,即可設定契約有多層重設期間,且每一期間內使用多個觀察日的平均價,並採用偏微分方程(Partial derivative equation)評價重設認購權證的價值。我們透過變數變換可將Black-Scholes的PDE簡化成熱傳導方程式(Heat equation),配合契約重設條款所定義之初始條件及格林函數(Green’s function)方法,透過遞迴積分方法(recursive integral method)即可解亞式重設買權價格。
    國內目前認購權證多採用兩天平均均價作為標的股價,故本研究的數值分析重設條款即以兩天幾何平均均價作為重設的比較基準。研究結果發現,遞迴積分法具有一定的收斂效果,並且除了針對單點與雙點之重設契約中之各個參數作敏感度分析外,亦比較亞式與標準型(單日股價)的重設條款不同,對選擇權價值之影響。

    On the Taiwanese financial market, most reset warrants belong to Asian reset option, which will reset its exercise price as the pre-specified reset strike, if the geometric average underlying price, not single closing price, falls on the reset criteria at the pre-determined monitoring window. Using multi-day average price can prevent the manipulated possibility of the stock prices and lessen the question of a delta jump resulting in the difficulty of risk management. In addition, it is also a path-dependent derivative whose payoff is based on the historical average stock prices.
    This research valuates the Asian reset option with multiple monitoring windows by solving the PDE equation with the initial condition. After performing the Heat Equation transformed into the Black-Scholes PDE, we solve the Heat Equation solve the Heat Equation through the Green’s function and the boundary element method and then obtain the option value by an analytic formula through the recursive integral method.
    In our numerical results, we take a contract with two-day geometric average underlying price as the comparison with the dependent strike resets and one or two reset windows. We find the integral representation will be convergent as increasing the number of intervals based on a quadratic polynomial approximation. Furthermore, we make some sensitivity analysis for the general parameters and unique factors of reset clauses. Compare the option value using two-day average as base with a standard reset contract (single closing price), we illustrate how the value difference makes the effect on the current underlying prices.

    ABSTRACT.............................................III LIST OF TABLES.......................................VII LIST OF FIGURES......................................VIII CHAPTER 1 INTRODUCTION...............................1 1.1 Historical Background..................................1 1.2 Categorizations of Reset Clauses.......................2 1.3 Research Motivation....................................4 1.4 Research Objectives....................................5 1.5 Structure of Thesis....................................6 CHAPTER 2 LITERATURE REVIEW..........................7 2.1 Reset Option...........................................7 2.2 Asian Option...........................................11 2.3 Asian Reset Option.....................................13 CHAPTER 3 METHODOLOGY................................16 3.1 Contract Specification.................................16 3.2 Preliminaries and Initial Value Problem................18 3.3 Valuation Algorithm with Reset Feature of Geometric Average Price.20 3.3.1 Two-day average price as reset comparison with the reset trigger...20 3.3.2 Multi-day average price as reset comparison with the reset trigger.23 3.4 Valuation Algorithm with Multiple Reset Dates Feature..26 3.4.1 Two-day average and two reset dates................................27 3.4.2 Two-day average and multiple reset dates...........................32 3.5 Generalize Valuation Algorithm.........................33 CHAPTER 4 NUMERICAL ANALYSIS.........................35 4.1 Convergence in Recursive Integral Method...............35 4.2 Characteristics of Asian Reset Options.................38 4.2.1 Reset features of Asian reset options..............................38 4.2.2 Influence of general parameters on Asian reset options.............45 4.2.3 Influence of unique reset parameters on Asian reset options........55 4.3 Comparisons with Standard Reset Options................64 CHAPTER 5 CONCLUSION................................70 5.1 Conclusion.............................................70 5.2 Further Research.......................................71 REFERENCES..........................................73

    [1]Andricopoulos, A. D., Widdicks, M., Duck, P. W., and Newton, D. P., 2003, Universal Option Valuation Using Quadrature Methods, Journal of Financial Economics, vol. 67, 3, 447-471.
    [2]Black, F. and Scholes, M., 1973, The Pricing of Options and Corporate Liabilities, Journal of Political Economy 81, 637-654.
    [3]Boyle, P.P., Kolkiewicz, A.W., and Tan, K.S., 2001, Valuation of the Reset Options Embedded in Some Equity-Linked Insurance Product, North American Actuarial Journal 5, 3.
    [4]Chang C. C., Chung, S. L., and Shackleton, M. B., 2003, Pricing Options with American-style average reset features, Quantitative Finance vol. 4, 292-300
    [5]Cheng, W. Y. and Zhang, S., 2000, The Analytics of Reset Options, Journal of Derivatives, Fall, 59-71.
    [6]Cox, J.C., Ross, S.A., and Rubinstein, M., 1979, Option pricing: A Simplified Approach, Journal of Financial Economics 7, 229-264.
    [7]Curran, M., 1992, Beyond Average Intelligence, Risk: Health, Safety and Environment vol 5., 10, 25-29.
    [8]Dai, M., and Kwok, Y.K., 2005, Options with combined reset rights on strike and maturity, Journal of Economic Dynamics & Control 29, 1495-1515.
    [9]Dai, M., Kwok, Y.K., and Wu, L. X., 2003, Options with Multiple Reset Rights, International Journal of Theoretical and Applied FinanceVol.6, 6, 637-653.
    [10]Dai, M., Kwok, Y.K., and Wu, L. X., 2004, Optimal shouting policies of options with strike reset right, Mathematical Finance Vol. 14, 3, 383-401
    [11]Dai, T. S., Fang, Y. Y., and Lyuu, Y. D., 2005, Analytics for geometric average trigger reset options, Applied Economics Letters, 12, 835-840
    [12]Deàk, I., 1988, Multidimensional Integration and Stochastic Programming. In Y. Ermoliev & R. J.-B. Wets(Eds.), Numerical Techniques for Stochastic Optimization, 187-200, Berlin : Springer-Verlag.
    [13]Dewynne, J. and Wilmott, P., 1993, Partial to The Exotic, Risk: Health, Safety and Environment, 6, 38–46
    [14]Gollwitzer, S. and Rackwitz, R., 1987, Comparison of Numerical Schemes for the Multinormal Integral. In Reliability and Optimization of Structural Systems, Lecture notes in engineering 33, 157-174, Berlin : Springer-Verlag.
    [15]Gray S. F. and Whaley, R. E., 1999, Reset Put Options Valuation, Risk Characteristics, and an Application, Australian Journal of Management 24, 1-20.
    [16]Hsueh, L. P. and Liu, Y. A., 2001, Step-Reset Options-Design and Valuation, The Journal of Futures Markets Vol. 22, 2, 155-171
    [17]Hung, Y. Y., 2007, Valuation of Double Reset Options
    [18]Kao, C. H. and Lyuu, Y. D., 2003, Pricing of Moving Average-Type Options with Applications, The Journal of Future Markets Vol. 23, 5, 415-440.
    [19]Kemna, A. and Vorst, A., 1990, A Pricing Method for Options Based on Average Asset Values, Journal of Banking and Finance, 14, 113-130.
    [20]Kimura, T. and Shinohara, T., 2004, Monte Carlo analysis of convertible bonds with reset clauses, European Journal of Operational Research 168, 301-310
    [21]Kimura, T., and Shinohara, T., 2004, Monte Carlo Analysis of Convertible Bonds with Reset Clauses, European Journal of Operational Research 168, 301-310.
    [22]Levy, E., 1992, Pricing European Average Rate Currency Options, Journal of International Money and Finance, 11, 474-491.
    [23]Li, S. J., Li, S. H., and Sun, C., 2005, A Generalization of Reset Options Pricing Formulae with Stochastic Interest Rates, Research in International Business and Finance 71, 15.
    [24]Liao S. L. and Wang, C. W., 2002, Pricing Arithmetic Average Reset Options with Control Variates, The Journal of Derivatives 10, 2.
    [25]Liao S. L. and Wang, C. W., 2003, The Valuation of Reset Options with Multiple Strike Resets and Reset Dates, The Journal of Future Markets Vol.23, 1, 87-107.
    [26]Mileesky, M., A. and Posner S. E., 1998, Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution, Journal of Financial and Quantitative Analysis Vol. 33, 3, 409-422.
    [27]Turnbull, S. and Wakeman, L., 1991, A Quick Algorithm for Pricing European Average Options, Journal of Financial and Quantitative Analysis, 26, 377-289.
    [28]Vijverberg, W. P. M., 1997, Monte Carlo Evaluation of Multivariate Normal Probabilities, Journal of Econometrics 76, 281-307.
    [29]Vorst, T., 1992, Price and Hedge Ratios of Average Exchange Rate Options, International Review of Financial Analysis, 1, 179-193.
    [30]Yang, Z., Yi, F., and Dai, M., 2006, A Parabolic Variational Inequality Arising from The Valuation of Strike Reset Options, Journal of Differential Equations 230, 481-501.

    下載圖示 校內:2009-06-25公開
    校外:2009-06-25公開
    QR CODE