簡易檢索 / 詳目顯示

研究生: 柯仕鴻
Ko, Shih-Hung
論文名稱: 新穎的最大功率點追蹤技術應用在分散式太陽能擷取系統設計之研究
Study on the system design of a distributed photovoltaic power harvesting system using novel maximum power point tracking methodology
指導教授: 趙儒民
Chao, Ru-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 133
中文關鍵詞: 分散式太陽能系統集中式太陽能系統最大功率點追蹤電源轉換電路模組二次式極值法最陡梯度與黃金分割法多維度最大功率點追蹤
外文關鍵詞: Distributed photovoltaic system, centralized photovoltaic system, maximum power point tracking, module integrated converter, quadratic maximization, steepest descent and golden section search, multi-dimensional MPPT
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能電力擷取系統中,其整體轉換效率通常除取決於太陽能電池的轉換效率外,也受到最大功率點追蹤效能及電源轉換器之轉換效率等其他因素的影響。分散式太陽能電力系統,經證明於太陽能電池遭遇到部分遮蔽、表面髒污及各電池出廠特性不匹配等狀況時,相較於傳統集中型太陽能電力系統具有更高之系統運作效率。本論文針對分散式太陽能電力系統提出兩種MPPT系統架構:基於二次式極值配合PI穩壓的分散式MPPT控制,及利用最陡梯度法配合黃金分割實現多維度MPPT控制。系統基本特性及太陽能MPPT過程等的模擬是利用NI Multisim and LabVIEW Co-simulation完成。在二次式極值演算法效能的評估上,除模擬計算外,並將其套用至水面船上驗證其運作的可靠性。針對利用最陡梯度法的多維度MPPT,本文也針對各種不同的操作狀況進行模擬計算。本文最後分別針對二次式分散式控制及最陡梯度多維度MPPT於系統系館頂樓做一系列暫態及長時間的實驗測試,並將兩者實驗結果進行比較及討論。

    In general, a good design of photovoltaic power harvesting systems is the consequence of high efficiency of the solar panel, the maximum power point tracking, MPPT method, and inverter for grid-connection or battery management system for stand-alone application. It has been also shown that a distributed PV system has a higher solar efficiency than the traditional centralized system, since the solar panels usually experience partial shading, dust, and panel mismatching conditions, etc. during operations. In this thesis, two novel maximum power point tracking methodologies are presented for two different types of distributed system: the distributed MPPT is achieved by using the quadratic maximization with PI voltage regulation; the multi-dimensional MPPT is achieved by using the steepest descent and golden section search algorithm. System simulation is carried out by using NI Multisim and LabVIEW Co-simulation. A robust module-integrated-converter using PI control is also designed and tested for the proposed system. The MPPT performance of the quadratic maximization method is first benchmark tested, and then this algorithm is adopted on a moving ship to verify its reliability. The performance is proved to be better than the popular perturb-and-observe method. The distributed MPPT technology using the quadratic maximization method has been tested on a stationary foundation, and the results compared with a traditional centralized PV system has also been made. Comprehensive simulations and test results for the multi-dimensional MPPT method for the distributed system are reported. Comparison between these two methods are also given in the end.

    ABSTRACT I Acknowledgement III Contents IV List of Figures IX List of Tables XVII Nomenclature XIX Chapter 1 Introduction 1 1.1 Introduction to Photovoltaic (PV) Systems 1 1.2 Literature Reviews 4 1.2.1 Development of the Distributed PV System 4 1.2.2 MPPT Architecture for Distributed PV Systems 7 1.3 Motivation and Objectives 9 Abstract of chapter 1 11 Chapter 2 Characteristics of the Centralized PV System 15 2.1 Solar Cells 15 2.1.1 Electrical Characteristics of a Solar Cell 15 2.1.2 Evaluating for Equivalent Circuit Parameters of a Solar Panel 18 2.1.3 Characteristic Curve of a Solar Panel 22 2.2 Switch Mode Power Supply Circuit 24 2.2.1 Buck Converters 24 2.2.2 Boost Converters 28 2.3 Analysis of Centralized PV Systems 30 Abstract of chapter 2 35 Chapter 3 Distributed PV System Design 36 3.1 Introduction to the Distributed PV Systems 36 3.1.1 Module Integrated Converter for Distributed PV Systems 36 3.1.2 MIC Characteristic for the Distributed PV System 38 3.1.3 System Simulation by Multisim 40 3.2 System Control of Distributed PV Systems 42 3.2.1 Distributed PV MPPT System using FPGA 42 3.2.2 PV Voltage Regulation 46 3.3 Converter Design for Distributed PV Systems 50 3.3.1 Design for Amorphous PV Panels 50 3.3.2 Design for Poly-silicon PV Panels 53 Abstract of chapter 3 57 Chapter 4 MPPT Algorithms for Distributed PV Systems 59 4.1 Quadratic Maximization MPPT Algorithm 59 4.1.1 Previous QM Method Used on a Moving Vehicle 61 4.1.2 Modified QM MPPT Algorithm 63 4.2 Performance Evaluation for Quadratic Maximization Method 67 4.2.1 Benchmark Test for Quadratic Maximization Method 67 4.2.2 Sandia Dynamic Performance Tests 70 4.2.3 Experiments on the Solar Ship 72 4.3 Multi-Dimensional PV System Control using the Steepest Descent Algorithm 75 4.3.1 The steepest Descent Optimization 75 4.3.2 Applying the Steepest Descent Method to the Photovoltaic MPPT 77 4.4 Performance Evaluation for MPPT using the Steepest Descent Method 80 4.4.1 Simulation Results of the 2-D PV System 80 4.4.2 Results of the 3-D and 4-D PV System 82 4.4.3 Results of the 4-D PV System under Step Changes of Irradiation 85 4.4.4 Simulation Results Considering Measurement Error 88 4.4.5 Estimation for the Output Powers of Individual Panel 90 Abstract of chapter 4 93 Chapter 5 Experimental Results 95 5.1 Experiment of Distributed QM MPPT 96 5.1.1 Configuration of Distributed MPPT Experiment 96 5.1.2 Experimental Results of the Distributed MPPT 99 5.2 Experiment of Global Multi-Dimensional MPPT 108 5.2.1 Configuration of Multi-Dimensional MPPT Experiment 108 5.2.2 Experimental Results of Multi-Dimensional MPPT 109 5.3 Transient Performance Comparison between Distributed and Multi-Dimensional MPPT 115 Abstract of chapter 5 117 Chapter 6 Conclusions and Future Work 119 6.1 Conclusions 119 6.2 Future Work 121 Abstract of chapter 6 123 References 126 VITA 130 Publication List 131

    [1] M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems – an overview,” in Proc. of IEEE 33th Annual Power Electron. Spec. Conf., vol. 4, pp. 1995-2000, June 2002.
    [2] B. Decker and U. Jahn, “Performance of 170 grid connected PV plants in northern Germany-analysis of yields and optimization potentials,” Solar Energy, vol. 59, no. 4, pp. 127-133, June 1997.
    [3] K. Kurokawa, H. Sugiyama, and D. Uchida, “Extended performance analysis of 70 PV systems in Japanese field test program,” in Proc. of IEEE 26th Photovoltaic Spec. Conf., pp.1249-1252, Sep. 1997.
    [4] A. Woyte, J. Nijs, and R. Belmans, “Partial shadowing of photovoltaic arrays with different system configurations: literature review and field test results,” Solar En-ergy, vol. 74, no. 3, pp. 217-233, March 2003.
    [5] G. Petrone, G. Spagnuolo, and M. Vitelli, “Analytical model of mismatched photo-voltaic fields by means of Lambert W-function,” Solar Energy Mater. Solar Cells, vol. 91, no. 18, pp. 1652-1657, Nov. 2007.
    [6] F. Martínez-Moreno, J. Muñoz, and E. Lorenzo, “Experimental model to estimate shading losses on PV arrays,” Solar Energy Mater. Solar Cells, vol. 94, no. 12, pp. 2298-2303, Dec. 2010.
    [7] E.V. Paraskevadaki and S. A. Papathanassiou, “Evaluation of MPP voltage and pow-er of mc-Si PV modules in partial shading conditions,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 923-932, Sep. 2011.
    [8] S. R. Chowdhury, and H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Solar Energy Materials and Solar Cells, vol. 94, no. 9, pp. 1441-1447, Sep. 2010.
    [9] A. Kouchaki, H. Iman-Eini, and B. Asaei, “A new maximum power point tracking strategy for PV arrays under uniform and non-uniform insolation conditions,” Solar Energy, vol. 91, pp. 221-232, May 2013.
    [10] A. Mäki, S. Valkealahti, and J. Leppäaho, “Operation of series-connected sili-con-based photovoltaic modules under partial shading conditions,” Prog. Photovolt.: Res. Appl., vol. 20, no. 3, pp. 298-309, May 2012.
    [11] J. H. R. Enslin, M. S. Wolf, and D. B. Snyman, “Integrated maximum power point tracking converter,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 343-349, Dec. 1997.
    [12] G. R. Walker and P. C. Sernia, “Cascaded DC-DC converter connection of photovol-taic modules,” in Proc. of IEEE 33rd Annual Power Electron. Spec. Conf., vol. 1, pp.24-29, June 2002.
    [13] G. R. Walker, J. K. Xue, and P. C. Sernia, “PV String per-module maximum power point enabling converters,” in Proc. of Australaian Universities Power Engineering Conference, pp. 112-117, Sep. 2003.
    [14] N. Femia, M. Fortunato, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, “Guide-lines for the optimization of P&O technique for grid-connected double-stage photo-voltaic systems,” in Proc. IEEE Int. Symp. Ind. Electron., pp. 2420-2425, June 2007.
    [15] N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, and M. Vitelli, “Distributed maximum power point tracking of photovoltaic arrays: novel approach and system analysis,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2610-2621, July 2008.
    [16] G. Petrone, G. Spagnuolo, and M. Vitelli, “An analog technique for distributed MPPT PV applications,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4713-4722, Dec. 2012.
    [17] G. Petrone, G. Spagnuolo, and M. Vitelli, “TEODI: A new technique for distributed maximum power point tracking PV applications,” in Proc. of 2010 IEEE Int. Conf. Ind. Tech., pp. 982-987, March 2010.
    [18] C. A. Ramos-Paja, G. Spagnuolo, G. Petrone, M. Vitelli, and J. D. Bastidas, “A mul-tivariable MPPT algorithm for granular control of photovoltaic systems,” in Proc. of IEEE Int. Symp. Ind. Electron., pp. 3433-3437, July 2010.
    [19] G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, and M. Vitelli, “Granular control of photovoltaic arrays by means of a multi-output Maximum Power Point Tracking al-gorithm,” Prog. Photovolt. Res. Appl., vol. 21, no. 5, pp. 918-932, Aug. 2012.
    [20] T. Markvart and L.Castaner, Practical Handbook of Photovoltaics: Fundamentals and Applications, Oxford: Elsevier Science Ltd, 2003.
    [21] B. K. Bose, P. M. Szczesny, and R. L. Steigerwald, “Microcomputer control of a residential photovoltaic power conditioning system,” IEEE Trans. Ind. Appl., vol. IA-21, no. 5, pp. 1182-1191, Sep. 1985.
    [22] L. Kenneth and Kennerud, “Analysis of performance degradation in CdS solar cells,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-5, no. 6, pp. 912-917, Nov. 1969.
    [23] R. W. Erickson and D. Maksimovic´, Fundamental of Power Electronics, Norwell, MA: Kluwer, 2001.
    [24] A. Elasser, M. Agamy, J. Sabate, R. Steigerwald, R. Fisher, and M. Harf-man-Todorovic, “A comparative study of central and distributed MPPT architectures for megawatt utility and large scale commercial photovoltaic plants,” in Proc. of 36th Annual Conf. on IEEE Ind. Electron. Society, pp. 2753-2758, Nov. 2010.
    [25] W. Xiao, W. G. Dunford, P. R. Palmer, and A. Capel, “Regulation of photovoltaic voltage,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1365-1374, June 2007.
    [26] H. Patel and V. Agarwal, “MPPT Scheme for a PV-Fed Single-Phase Single-Stage Grid-Connected Inverter Operating in CCM With Only One Current Sensor,” IEEE Trans. Energy Convers., vol. 24, no. 19, pp. 256-263, March 2009.
    [27] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622-2628, July 2008.
    [28] G. Petrone, G. Spagnuolo, R. Teodorescu, M. Veerachary, and M. Vitelli, “Reliabil-ity Issues in Photovoltaic Power Processing Systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp.2569-2580, July 2008.
    [29] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, June 2007.
    [30] S. Jain and V. Agarwal, “Comparison of the Performance of Maximum Power Point Tracking Schemes Applied to Signal-stage Grid-connected Photovoltaic Systems,” IET Electric Power Applications, vol. 1, no. 5, pp. 753-762, Sep. 2007.
    [31] V. Salas, E. Olías, A. Barrado, and A. Lázaro,” Review of the Maximum Power Point Tracking Algorithms for Stand-alone Photovoltaic Systems,” Solar Energy Mater. and Solar Cells, vol. 90, no. 11, pp. 1555-1578, July 2006.
    [32] E. Koutroulis, K. Kalaitzakis, and N. C. Voulgaris, “Development of a Microcon-trollerbased, Photovoltaic Maximum Power Point Tracking Control System,” IEEE Trans. Power Electron., vol. 16, no.1, pp.46-54, Jan. 2001.
    [33] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, July, 2005.
    [34] K. H. Hussein, I. Muta, T. Hshino, and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” in Proc. Inst. Elect. Eng., vol. 142, no. 1, pp. 59-64, Jan. 1995.
    [35] R. M. Chao, S. H. Ko, F. S. Pai, I. H. Lin and C. C. Chang, “Evaluation a Photovoltaic Energy Mechatronics System with Built in Quadratic Maximum Power Point Tracking Algorithm,” Solar Energy, vol.83, no. 12, pp. 2177-2185, Dec. 2009.
    [36] F. S. Pai and R. M. Chao, “A New Algorithm to Photovoltaic Power Point Tracking Problems with Quadratic Maximization,” IEEE Trans. Energy Convers., vol.25, no. 1, pp. 262-264, March 2010.
    [37] S. H. Ko and R. M. Chao, “Photovoltaic dynamic MPPT on a moving vehicle,” Solar Energy, vol. 86, no. 6, pp. 1750 – 1760, June 2012.
    [38] W. Bower, “Performance Test Protocol for Evaluating Inverters Used in Grid-Connected Photovoltaic Systems,” Institute for Sustainable Technology, 2004.
    [39] E. K. P. Chong and S.H. Zak, An introduction to optimization, 2nd Ed., New York: Wiley, 2001.

    下載圖示 校內:2019-01-09公開
    校外:2019-01-09公開
    QR CODE