簡易檢索 / 詳目顯示

研究生: 李承叡
Lee, Cheng-Juei
論文名稱: 利用全球導航衛星定位系統三維斷層掃描研究日全蝕對電離層之擾動
A Study of Ionospheric responses to the 21 August 2017 Solar Eclipse by using three-dimensional GNSS tomography
指導教授: 林建宏
Charles
共同指導教授: 陳佳宏
Chen, Chia-Hung
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 全球導航衛星定位系統電離層數值斷層掃描日蝕
外文關鍵詞: GNSS, ionosphere, computerized tomography, solar eclipse
相關次數: 點閱:119下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近一次日全蝕發生於2017年8月21日,日全蝕的陰影軌跡由西向東橫跨整個北美洲。日蝕期間受到陰影覆蓋的區域電離層全電子含量(Total Electron Content,TEC)有明顯降低的趨勢,利用全球導航衛星系統(Global Navigation Satellite System,GNSS)計算二維TEC空間分布資料時,可看到隨時間移動的月影軌跡(TEC較低之處)。
    本研究使用數值斷層掃描(tomography)演算法,將二維空間分布的電子密度積分值(TEC)重建為三維電離層電子密度分佈形態。因為此日蝕事件覆蓋的空間範圍很大,且沿路上通過之GNSS地面接收站電波射線資料充足,適合利用本研究中所使用的最小約束平方法進行電離層電子密度三維空間分佈反演。本研究使用的斷層掃描方法有不需使用初始猜測值作為背景值的優點,結果顯示能不受到初始猜測值的影響,並有效反演出日蝕對電離層造成的電子密度空間擾動變化情形。利用事件天(8月21日)與參考天(8月20日)兩日反演的結果進行分析,結果顯示與過去研究中的觀測相近,且能看到擾動發生時帶電粒子在垂直方向上的變化,如日蝕時來自電漿球層的電漿傳輸通量與日蝕過後帶電粒子的增加主要是來自下層的光化學游離作用。
    此方法需要大量的觀測資料,若資料量不足的情況下,三維空間上的解析度將變得不精細,因此較適合重建大規模尺度電離層擾動事件的三維斷層掃描結構。

    The ionosphere responses to the total solar eclipse occurred on August 21, 2017, with its shadow traveling across North America from West to East coasts. During the eclipse, the ionospheric total electron content (TEC) is significantly reduced. However, the three-dimensional ionospheric perturbation during eclipse is less studied. In this study, we use the constrained least-squares method to reconstruct the two-dimensional total electron content data into a three-dimensional ionospheric electron density distribution. The tomographic method used in this study has the advantage of not using the initial guess value as the background value, and successfully calculates the spatial disturbance of the electron density caused by the solar eclipse to the ionosphere.
    Analyzing the tomographic results of the eclipse day (August 21) compared with the reference day (August 20), we can see the eclipse driven ionospheric plasma transport in the vertical direction showing the downward plasma fluxes from the plasmasphere which alleviate the effects of eclipse induced ionospheric electron density reductions. It is then followed by the post-eclipse increase of the electron density which is mainly produced by the intensified photoionization of the lower part of the ionosphere.

    摘 要 I Abstract II 致 謝 VI 目 錄 VII 圖目錄 IX 第一章 緒論 1 1.1 電離層 1 1.1.1 電離層電子密度觀測 3 1.2 電離層斷層掃描 7 1.3 日蝕 11 1.4 文獻回顧 12 1.5 研究動機 19 第二章 研究方法 20 2.1 研究參數簡介 20 2.2 約束最小平方法 22 第三章 結果與討論 27 3.1 垂直全電子含量(vTEC) 27 3.2 電離層斷層掃描結果 29 3.3 本次日蝕事件文獻討論 37 3.4 日蝕對電離層電漿傳輸動力之影響 40 3.4.1 日蝕時電漿球層向下的電漿傳輸通量 40 3.4.2 日蝕過後電離層電子密度增加 42 3.5 太陽閃焰對電離層的影響 46 第四章 結論 49 參考資料 50

    Altadill, D., J. G. Solé, E. M. Apostolov, Vertical structure of a gravity wave like oscillation in the ionosphere generated by the solar eclipse of August 11, 1999, Journal of Geophysical Research, Vol. 106, No. A10, Pages 21,419- 21,428, (2001)
    Austen J. R., S. J. Franke, C. H. Liu, Ionospheric imaging using computerized tomography. Radio Sci, 23(3), 299–307, (1988)
    Austen, J.R., S. J. Franke, C. H. Liu, K. C. Yeh, Applications of computerized tomography techniques to ionospheric research, In: International Beacon Satellite Symposium June 9–14, Oulu Finland, Proceeding part 1, pp 25–36, (1986)
    Bullett, T., & J. Mabie, Vertical and oblique ionosphere sounding during the 21 August 2017 solar eclipse, Geophysical Research Letters, 45, 3690–3697, doi:10.1002/2018GL077413, (2018)
    Cherniak, I., & I. Zakharenkova, Ionospheric total electron content response to the great American solar eclipse of 21 August 2017, Geophysical Research Letters, 45, 1199–1208, doi:10.1002/2017GL075989, (2018)
    Coster, A. J., L. Goncharenko, S.-R. Zhang, P. J. Erickson, W. Rideout, and J. Vierinen, GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse, Geophysical Research Letters, 44, 12,041–12,048, doi:10.1002/2017GL075774, (2017)
    Chen, C. H., A. Saito, C. H. Lin, M. Yamamoto, S. Suzuki, and G. K. Seemala, Medium‑scale traveling ionospheric disturbances by three‑dimensional ionospheric GPS tomography, Earth Planet Sp, 68:32, doi:10.1186/s40623-016-0412-6, (2016a)
    Chen, C. H., C. H. Lin, T. Matsuo, W. H. Chen, I. T. Lee, J. Y. Liu, J. T. Lin, and C. T. Hsu, Ionospheric data assimilation with Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model and GPS‐TEC during geomagnetic storm conditions, J. Geophys. Res. Space Physics, 121, 5708–5722, doi:10.1002/2015JA021787., (2016b)
    Chen, G., C. Wu, X. Huang, Z. Zhao, D. Zhong, H. Qi, L. Huang, L. Qian, and J. Wang, Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012, J. Geophys. Res. Space Physics, 120, 3009- 3020, doi:10.1002/2014JA020849, (2014)
    Dellinger, J. H., Sudden disturbances of the ionosphere, Proc. I. R. E., 25, 1253, (1937)
    Huba, J. D., & D. Drob, SAMI3 prediction of the impact of the 21August 2017 total solar eclipse on the ionosphere/ plasmasphere system, Geophy. Res. Lett., 44, 5928- 5935, doi:10.1002/2017GL073549, (2017)
    Huang, C. R., C. H. Liu, K. C. Yeh, K. H. Lin, W. H. Tsai, H. C. Yeh, and J. Y. Liu, A study of tomographically reconstructed ionospheric images during a solar eclipse, Journal of Geophysical Research, Vol. 104, No. A1, Pages 79- 94, (1999)
    Hofmann- Wellenhof, B., H. Lichtenegger and J. Collins., Global positioning system : theory and practice, Springer, New York, (1992)
    Jakowski, N., S. M. Stankov, V. Wilken, C. Borries, D. Altadill, J. Chum, D. Buresova, J. Boska, P. Sauli, F. Hruska, Lj. R. Cander, Ionospheric behavior over Europe during the solar eclipse of 3 October 2005, Journal of Atmospheric and Solar- Terrestrial Physics, 70, 836–853, doi:10.1016/j.jastp.2007.02.016, (2008)
    Kelly, M. C., The Earth’s Ionosphere, Academic Press Inc. Boston, (2009)
    Le, H., L. Liu, X. Yue, W. Wan, and B. Ning, Latitudinal dependence of the ionospheric response to solar eclipses, J. Geophys. Res., 114, A07308, doi:10.1029/2009JA014072, (2009)
    Leonovich, L.A., A.T. Altynsev, V.V. Grechnev, E. L. Afraimovich, Ionospheric effects of the solar flares as deduced from global GPS network data
    Miiller-Wodarg, I. C. F., A.D. Aylward, M. Lockwood, Effects of a Mid-Latitude Solar Eclipse on the Thermosphere and Ionosphere- A Modelling Study, Geophysical Research Letters, Vol. 25, No. 20, pages 3787-3790, (1998)
    Radicella S. M., R. Leitinger, The evolution of the DGR approach to model electron density profiles, Adv Space Res, 27(1), 35–40, (2001)
    Rishbeth, H., I. C. F. Müller-Wodarg, Vertical circulation and thermospheric composition: a modelling study, Ann. Geophysicae, 17, 794- 805, (1999)
    Rishbeth, H., & O. K. Garrot, Introduction to Ionospheric Physics, Academic Press Inc., New York, (1969)
    Rishbeth, H., Further analogue studies of the ionospheric F layer, Proceedings of the Physical Society, 81(1), 65- 77, doi:10.1088/0370-1328/81/1/312, (1963)
    Sun, Y.-Y., J.-Y. Liu, C.-H. Lin, C.-Y. Lin, M.-H. Shen, C.-H. Chen,… M.-Y. Chou, Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017, Geophysical Research Letters, 45, doi:10.1002/2017GL075926, (2018)
    Seemala, G. K., M. Yamamoto, A. Saito, and C. H. Chen, Three-dimensional GPS ionospheric tomograhy over Japan using constrained least squares, J. Geophys., Res. Space Physics, 119, 3044–3052, doi:10.1002/2013JA019582, (2014)
    Schunk, R., Ionospheres: physics, plasma physics, and chemistry, Cambridge university press, (2009)
    Tacza, José C., Jean- Pierre Raulin, Edith L. Macotela, Edmundo O. Norabuena, Germán Fernandez, Atmospheric electric field variations and lower ionosphere disturbance during the total solar eclipse of 2010 July 11, Advances in Space Research, 58, 2052- 2056, (2016)
    宋昆霖, 「電離層斷層掃描之研究」, 國立中央大學, 碩士論文, (2007)
    林其彥, 「利用福爾摩沙衛星三號進行星載電離層斷層掃描」, 國立中央大學, 碩士論文, (2009)
    林建宏, 「磁暴時低緯度電離層變化」, 國立中央大學, 博士論文, (2005)
    劉建廷, 「結合NNSS與GPS/MET衛星資料於電離層斷層掃描觀測及其比較」, 國立中央大學, 碩士論文, (2001)

    下載圖示 校內:2020-08-21公開
    校外:2020-08-21公開
    QR CODE