| 研究生: |
廖冠傑 Liao, Kuan-Chieh |
|---|---|
| 論文名稱: |
地工合成物加勁陡坡之耐震行為研究 Study on the Seismic Behavior of Geosynthetic-reinforced Steep Slopes |
| 指導教授: |
黃景川
Huang, Ching-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 268 |
| 中文關鍵詞: | 寬幅試驗 、加勁邊坡模型地震力加載 、永久變位 、震動台試驗 |
| 外文關鍵詞: | geosynthetic-reinforced slope, seismic load, permanent displacement, dynamic response, Arais intensity, stiffness coeffient, internal failure index |
| 相關次數: | 點閱:208 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用層狀剪力砂箱與移動式霣落器在震動台施作兩種尺寸之〖60〗^°加勁邊坡,一為上底長、下底長、寬、高為 600mm × 880mm × 500 mm × 480mm;二為826mm × 1115mm × 500 mm × 500mm,使用土壤材料為南投縣眉溪中上游河砂試體單位單位重γ_d=15 kN/m^3,藉由改變其加勁材料之勁度、加勁層數、試體土量及改變地震波輸入條件用以探討加勁邊坡在地震力作用之下之牆體變位狀況、牆體加速度反應情況、加勁材料受力分布以及地震波之能量,並將試驗結果與過去結果一同比較討論。
由震動台模型試驗結果可知 : 一、加勁邊坡在地震中之變位深受震波頻率的影響,其牆面變位隨著頻率的降低而增加,其原因是地震波之能量的影響。二、藉由最大永久變位與地表水平尖峰加速度(HPGA)之關係曲線,知道邊界的影響和地震波頻率的變因影響大。三、本研究正規化牆體變位曲線落在其他學者之曲線的右側,是因為本研究考慮了牆體臨界狀態之前的永久變位。四、加速度反應由增幅往減幅發展的過程與過去研究所建議的曲線相近。五、將地震波加載之波形用平均I_a值的來表示,比HPGA更能清楚比較其強弱,而在Arais intensity之增幅係數上,其趨勢跟頻率有關,跟牆面角度無關。六、Stiffness coefficient和Internal failure index是可以來評估加勁材所能產生的加勁效果的指標。七、加勁牆在地表運動作用下,其最大牆變面變位發生在接近頂部;而加勁邊坡在地表運動作用下,其最大牆變面變位發生在接近底部。
In present study, geosynthetic-reinforced model slopes were brought to failure using a shaking table test facility. A laminar box was used to contain the model slope in the shaking table tests. The test medium used in this study is a medium-dense river sand. Various peak accelerations, frequencies of base input motion, stiffness of reinforcement, layout of reinforcement and back boundary were used in the model test to investigate their influence on the dynamic behavior of the geosynthetic-reinforced steep slopes. Results of a comparative study between the test results reported in the literature and those in the present study reveal:
1. The seismic displacements are significantly affected by the frequency of base motion, i.e., seismic displacements increase with decreasing frequency of base motions, for identical values of horizontal peak ground acceleration (HPGA).
2. The influence of width of backfill and frequencies of base input motion is large, in terms of the maxium permanent displacement of the slope(D_max) under various horizontal peak ground acceleration(HPGA).
3. The normalized displacement curves obtained here fall to the right of analytical and empirical curves reported in the literature, suggesting that a permanent displacement of the slope prior to the yielding of the slope occurs. This phenomenon has not been considered in previous studies.
4. Transitions from an amplification state to a de-amplification state at the slope crest occur at certain levels of input ground accelerations, depending on the input wave frequencies.
5. The adoption of the average of Arais intensity is significant in accurately capturing the seismic behavior of reinforced slopes The trend of amplification factor generated by Arais intensity is afunction of input wave frequency, while is independent of the slope angle of wall.
6. Stiffness coefficient and Internal failure index are effective indicators that can be utilized to evaluate the seismic response of reinforced slopes.
參考文獻
1. ASTM D4595 Test methods for tensile properties of geotextiles by the
wide-width strip method. ASTM International, West Conshohocken, PA, USA.
2. Bathurst, R. J. (1998) “Segmental retaining wall - seismic design manual”
National Concrete Masonry Association, Herndon, VA, USA.
3. Bathurs, R. J. and Cai, Z. (1995) “Pseudo-static seismic analysis of geosynthetic reinforced segmental retaining walls’’ Geosynthetics International, Vol. 2, No. 5, pp 789-832.
4. Cai, Z. and Bathurs, R. J. (1996) “Deterministic sliding block methods for
estimation seismic displacements of earth structures” Soil Dynamic and Earthquake Engineering, Vol. 15, No. 4,pp. 255-268.
5. Chopra, A. K. (2001) “Dynamic of Structures” Prentice Hall, 2th ed, Chapter 2, pp. 39-64.
6. Huang, C.-C., Chou, L.-H., and Tatsuoka, F. (2003) “Seismic displacements of geosynthetic-reinforced soil modular block walls” Geosynthetics International,
Vol. 10, No. 1, pp. 2-23.
7. Huang, C.-C. and Wu, S.-H. (2006) “Simplified approach for assessing seismic displacements of soil-retaining walls. Part I: geosynthetic-reinforced walls with modular block walls” Geosynthetics International, Vol. 13, No. 6, pp 219-233.
8. Huang, C.-C., Horng, J.-C., Chang, Chueh, S.-Y., W.-J., Chiou, J.-S., and Chen, C.-H., (2010) “Dynamic behavior of reinforced slopes: horizontal acceleration response’’ Geosynthetics International, Vol. 17, No. 4, pp 207-219.
9. Huang, C.-C., Horng, J.-C., Chang, W.-J., Chiou, J.-S., and Chen, C.-H., (2011) “Dynamic behavior of reinforced walls – horizontal displacement response” Geotextiles and Geomembranes, Vol. 29, pp. 257-267.
10. Huang, C.-C. (2015) “Settlement of footings at the crest of reinforced slopes
subjected to toe unloading’’ Geosynthetics International.
11. Huang, C.-C., Huang, B.-S., Chen, Y.-W. (2016) “Stability analyses for
geosynthetic-reinforced steep-faced slopes subjected to toe scouring’’ Journal of
GeoEngineering, Vol. 11, No. 3, pp. 123-132.
12. Huang, C.-C. (2016) “Model tests on the bearing capacity of reinforced saturated sand ground’’ Geosynthetics International.
13. Iai, S. (1988) “Similitude for shaking table tests on soil-structure-fluid model in
1g gravitational field”
14. Idriss, I. M. (1990) “Response of soft soil sites during earthquakes” Proceedings
H. Bolton Seed Memorial Symposium, Vol. 2, No. 4, pp 273-289.
15. Krishna, A. M. and Latha, G. M. (2007) “Seismic response of reinforced soil-
retaining wall models using shaking-table tests” Geosynthetics International, Vol.
14, No. 6, pp.355-364.
16. Matsuo, O., Tsutsumi, T., Yokoyama, K., and Saito, Y. (1998) “Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls” Geosynthetics International, Vol. 5, No. 1-2,pp. 97-126.
17. Newmark, N. M. (1965) “Effect of earthquake on dams and embankments” Geotechnique, Vol. 15, No 2, pp. 139-159.
18. Richardson, G. N. (1978) “Earthquake resistant reinforced earth walls” Proceeding of the Symposium on Earth Rienforcement, ASCE, Pittsburgh, PA., pp. 664-683.
19. Sabermahani, M., Ghalandarzadeh, A., and Fakher, A. (2009) “Experimental study on seismic deformation modes of reinforced-soil walls” Geotextiles and Geomembranes, Vol. 27, pp. 121-136.
20. Segrestin, P. and Bastick, M. J. (1988) “Seismic design of reinforced earth
retaining walls the contribution of finite element analysis” Proceedings of the International Geotechnical Symposium on Theory and Practice of Earth Reinforcement, pp. 577- 582.
21. Whitman, R. V. and Liao, S. (1985) “Seismic design of gravity retaining walls” Miscellaneous Paper GL-85-1,Department of the Army, US Army Corps of Engineers, Washington, DC.
22. 洪振沖 (2008),「加勁邊坡的地震穩定性探討」,國立成功大學土木研究所
博士論文。
23. 林煒傑 (2008),「以模型試驗探討加勁邊坡之耐震行為」,國立成功大學土
木研究所碩士論文。
24. 徐浩怡 (2016),「土壤之反覆直接剪力行為與模式化」,國立成功大學土木
研究所碩士論文。
25. 王斈文 (2017),「探討加勁擋土牆地震中變位之震動台試驗」,國立成功大
學土木研究所碩士論文。
26. 黃景川 (1998),「基礎工程」,三民書局。