簡易檢索 / 詳目顯示

研究生: 郭文碩
Kuo, Wen-Shuo
論文名稱: 非洲布魯氏錐蟲其TWD 蛋白質之NCO 區段的純化與特性分析
Purification and characterization of NCO segment of TWD protein from Trypanosoma brucei
指導教授: 王志堯
Wang, Chih-Yao
胥直利
Hsu, Chih-Li
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 109
中文關鍵詞: 多株抗體非洲布魯氏錐蟲訊息傳遞免疫沈澱
外文關鍵詞: TWD, Trypanosoma brucei, tubulin, actin
相關次數: 點閱:52下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非洲布魯氏錐蟲,俗稱非洲錐蟲,為一種單細胞真核類寄生性原生動物,可引起非洲昏睡病。其中新發現的TWD-1基因含有2154個核苷酸、可轉譯出589個胺基酸、分子量約65.3 kD之蛋白質,TWD。經比對資料庫顯示,TWD具有WD重覆區段、Leucine Zipper,以及ERM相似區,顯然是個多domain且多功能的蛋白質。ERM蛋白質其N端會與細胞膜上蛋白作用,如 : CD43、CD44、ICAM-1、-2、-3等,而C端會與actin binding,參與細胞骨架的作用,包含運動、附著、收縮及分裂。因此ERM蛋白質被認為是細胞膜及細胞骨架的連接蛋白質,在訊息傳遞與細胞運動上扮演極重要的角色。進一步比對蛋白質序列,顯示NCOⅠ限制酶片段內的胺基酸和ERM的actin binding區有極高的相似度,提供了TWD-1基因可能參與的生理作用。至目前為止,發現WD repeats參與許多種重要的生理現象,如細胞分裂、基因轉錄、成熟RNA的修飾與跨越細胞膜之訊息傳遞等,且至今已發現有許多含WD repeats之蛋白質會與細胞骨架之微管系統作用。更可說明TWD-1基因在生物體內可能扮演一重要角色。
    本論文以NCOⅠ限制酶切出之DNA片段所隱含的36kD蛋白質為研究重心。利用pET質體特性,先確定表現36kD蛋白質在細菌內的條件,再大量收取蛋白質,並以鎳親和管柱配以兩次梯度法脫去尿素及脫離親和柱,得到純化的蛋白質。此蛋白質經Edman degradation及MALDI-TOF法均確認此蛋白質和DNA隱含的密碼相符。這個純化後的蛋白質接著被做為抗原,注入兔子體內得到多株抗體後,利用此抗體做了以下實驗:1.確認TWD蛋白質在錐蟲體內為一65kD之蛋白質,與電腦預估相當,沒有明顯改變分子量的轉譯後修飾作用(post-translational modification)在此蛋白質上。2.經過不同程度的處理,可以看出TWD蛋白質主要是在detergent-resisitant fraction內,符合屬於骨架蛋白質之相關蛋白質定義。��|以免疫沉澱法與不同的fraction作用,可以看出TWD和微管成分蛋白質tubulin連結,和actin蛋白質也有連結關係。由2與3看出,TWD是骨架蛋白質之一份子,和微管及微絲兩大細胞骨架蛋白質都有連結。至於TWD在連結兩大系統這中間的角色,甚至和細胞骨架主導的細胞型態、生長與增殖的生理機制有何影響就留得後續的研究了。

    Trypanosoma brucei is a unicellular eukaryote that parasitizes in mammals and insects to cause African sleeping sickness of human being. A novel gene, TWD, is found in the organism that consists 2154 base of its full length cDNA and encodes a 65.3 kD protein. Similarity search showed that it contains 7 WD repeats protein at its entire C-terminal half and 7 leucine zipper and ERM protein motifs in WD repeat N-terminal extension. TWD obviously is a multi-domain protein which likely has a multi functions in the cell. WD repeat proteins have been found to participate in many important processes of a cell such as cell division, transcription, mRNA modification, proteasome-mediated protein degradation, signal transduction across cell membrane, and cell apoptosis. In database, TWD’s ortholog is PF20, a bridging protein of central tubules of axoneme in a green algae. In this thesis, the focus was set at an NCO I restriction fragment of TWD gene which contains motif of ERM protein, a protein family linking actin and cell membrane. The NCO fragment was expressed as inclusion body inside E. coli with pET system to have His-tag at its C terminus by 0.8mM IPTG induction at 37℃ for 5 hours. The expressed 36kD protein was collected and purified through Ni+2 charged affinity chromatography with two gradient steps to remove urea and later depart the adsorbed protein at 0.52M imidazole. Both Edman degradation and MALDI-TOF methods proved protein sequence as predicted from DNA sequence. This 36kD protein was then used to elicit rabbit polyclonal antiserum, NCO B, which was able to recognize a 65 kD protein in T. brucei cell lysate by Western method. Immuno-coprecipitation experiments showed that NCOB could pull down tubulin but not actin in the cytoplasm. In the cytoskeleton portion, TWD could be detected with tubulin and also with actin. Fractionation experiments showed that TWD resisted Triton X-100 wash and maintained with cytoskeleton. In summary, an antigen corresponding to part of TWD gene was prepared and used to elicit antiserum. Through this antiserum, TWD could be detected in the cell lysate without obvious modification and existed in the cytoskeleton. Most likely, TWD should be a tubulin and actin linker protein.

    中文摘要 1 英文摘要 3 致謝 5 目錄 6 圖目錄 9 附錄 11 藥品及材料 12 蟲體、儀器 15 緒論 17 材料與方法 22 1. pET蛋白質表現系統 22 1-1.大腸桿菌之形質轉換(transformation) 22 1-2.蛋白質表現(protein expression) 23 1-3.SDS-PAGE電泳分析(SDS-PAGE electrophoresis analysis) 24 1-4.大量表現重組蛋白質 26 1-5.大量蛋白質之取得 26 1-6.鎳離子親和管柱之前處理 27 1-7.重組蛋白質之純化 28 1-8.鎳離子親和管柱(Ni2+-chelating sepharose column)之維持與保存 29 1-9.蛋白質之脫鹽與濃縮 30 1-10.冷凍乾燥法 31 1-11.蛋白質N端胺基酸序列定序 31 1-12.抗NCO B多株抗體之取得 32 1-13.以Protein A sepharose 4 Fast Flow純化polyclonal anti-NCO B anti-serum 32 1-14.蛋白質濃度之定量 33 1-15.西方點墨法 34 1-16.免疫沉澱法(1) 35 1-17.免疫沉澱法(2) 36 1-18.Fractionation(1) 37 1-19.Fractionation(2) 38 1-20.MALDI-TOF 39 2..Trypanosoma brucei昆蟲型細胞培養 39 2-1.解凍細胞 39 2-2.繼代細胞 39 2-3.細胞保存 40 結果 42 1.重組蛋白質之表現 42 2.重組蛋白質之純化 42 3.多株抗體之檢測 43 4.不同株之anti-actin抗體檢測TWD蛋白質 43 5.免疫沉澱法(1)(TWD & actin) 44 6.Fractionation(1)(TWD&actin) 45 7.Fractionation(2)(TWD & actin) 45 8.免疫沉澱法(1)(TWD&��{tubulin�n、��{tubulin) 46 9. Fractionation(1)(TWD& ��{tubulin�n、��{tubulin) 47 10. Fractionation(2)( TWD&��{tubulin�n、��{tubulin) 47 11.免疫沉澱法(2) ( TWD&��{tubulin�n、��{tubulin) 47 討論 49 參考文獻 52 圖 57 附錄 95 自述 109

    1. Bentivoglio, M., Grassi-Zucconi, G., Olsson, T. & Kristensson, K. Trypanosoma brucei and the nervous system. Trends Neurosci 17, 325-9 (1994).
    2. Borst, P. Discontinuous transcription and antigenic variation in trypanosomes. Annu Rev Biochem 55, 701-32 (1986).
    3. Nilsen, T. W. trans-splicing: an update. Mol Biochem Parasitol 73, 1-6 (1995).
    4. De Lange, T. et al. Comparison of the genes coding for the common 5' terminal sequence of messenger RNAs in three trypanosome species. Nucleic Acids Res 12, 4431-43 (1984).
    5. Smith, E. F. & Lefebvre, P. A. PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. Mol Biol Cell 8, 455-67 (1997).
    6. Smith, E. F. & Lefebvre, P. A. The role of central apparatus components in flagellar motility and microtubule assembly. Cell Motil Cytoskeleton 38, 1-8 (1997).
    7. Pennarun, G. et al. Isolation and expression of the human hPF20 gene orthologous to Chlamydomonas PF20: evaluation as a candidate for axonemal defects of respiratory cilia and sperm flagella. Am J Respir Cell Mol Biol 26, 362-70 (2002).
    8. Zhang, Z. et al. A sperm-associated WD repeat protein orthologous to Chlamydomonas PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Biol 22, 7993-8004 (2002).
    9. Reiner, O., Cahana, A., Escamez, T. & Martinez, S. LIS1-no more no less. Mol Psychiatry 7, 12-6 (2002).
    10. Tai, C. Y., Dujardin, D. L., Faulkner, N. E. & Vallee, R. B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J Cell Biol 156, 959-68 (2002).
    11. Reiner, O. & Sapir, T. Abnormal cortical development; towards elucidation of the LIS1 gene product function (review). Int J Mol Med 1, 849-53 (1998).
    12. Fong, H. K. et al. Repetitive segmental structure of the transducin beta subunit: homology with the CDC4 gene and identification of related mRNAs. Proc Natl Acad Sci U S A 83, 2162-6 (1986).
    13. Neer, E. J., Schmidt, C. J. & Smith, T. LIS is more. Nat Genet 5, 3-4 (1993).
    14. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297-300 (1994).
    15. Garcia-Higuera, I. et al. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit. Biochemistry 35, 13985-94 (1996).
    16. Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181-5 (1999).
    17. Wall, M. A. et al. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83, 1047-58 (1995).
    18. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E. & Sigler, P. B. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature 379, 369-74 (1996).
    19. Lambright, D. G. et al. The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311-9 (1996).
    20. Mende, U., Schmidt, C. J., Yi, F., Spring, D. J. & Neer, E. J. The G protein gamma subunit. Requirements for dimerization with beta subunits. J Biol Chem 270, 15892-8 (1995).
    21. van der Voorn, L. & Ploegh, H. L. The WD-40 repeat. FEBS Lett 307, 131-4 (1992).
    22. Emes, R. D. & Ponting, C. P. A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet 10, 2813-20 (2001).
    23. Li, Q. & Suprenant, K. A. Molecular characterization of the 77-kDa echinoderm microtubule-associated protein. Homology to the beta-transducin family. J Biol Chem 269, 31777-84 (1994).
    24. Daggett, M. A., Li, Q., Weaver, R. F. & Suprenant, K. A. Overexpression of the 77-kD echinoderm microtubule-associated protein (EMAP), a WD-40 repeat protein, in baculovirus-infected Sf9 cells. Cell Motil Cytoskeleton 41, 57-67 (1998).
    25. Eichenmuller, B., Everley, P., Palange, J., Lepley, D. & Suprenant, K. A. The human EMAP-like protein-70 (ELP70) is a microtubule destabilizer that localizes to the mitotic apparatus. J Biol Chem 277, 1301-9 (2002).
    26. King, S. M., Patel-King, R. S., Wilkerson, C. G. & Witman, G. B. The 78,000-M(r) intermediate chain of Chlamydomonas outer arm dynein is a microtubule-binding protein. J Cell Biol 131, 399-409 (1995).
    27. Wilkerson, C. G., King, S. M., Koutoulis, A., Pazour, G. J. & Witman, G. B. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly. J Cell Biol 129, 169-78 (1995).
    28. Kim, H. W. et al. Genetic and molecular characterization of Skb15, a highly conserved inhibitor of the fission yeast PAK, Shk1. Mol Cell 7, 1095-101 (2001).
    29. Ochotorena, I. L. et al. Conserved Wat1/Pop3 WD-repeat protein of fission yeast secures genome stability through microtubule integrity and may be involved in mRNA maturation. J Cell Sci 114, 2911-20 (2001).
    30. Hermanto, U., Zong, C. S., Li, W. & Wang, L. H. RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 22, 2345-65 (2002).
    31. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-64 (1988).
    32. Kerppola, T. K. & Curran, T. Selective DNA bending by a variety of bZIP proteins. Mol Cell Biol 13, 5479-89 (1993).
    33. Kerppola, T. K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene 9, 3149-58 (1994).
    34. Kerppola, T. K. & Curran, T. The transcription activation domains of Fos and Jun induce DNA bending through electrostatic interactions. Embo J 16, 2907-16 (1997).
    35. Bretscher, A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol 97, 425-32 (1983).
    36. Tsukita, S. & Hieda, Y. A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol 108, 2369-82 (1989).
    37. Lankes, W. T. & Furthmayr, H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci U S A 88, 8297-301 (1991).
    38. Arpin, M., Algrain, M. & Louvard, D. Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr Opin Cell Biol 6, 136-41 (1994).
    39. Bourn, D. et al. Germline mutations in the neurofibromatosis type 2 tumour suppressor gene. Hum Mol Genet 3, 813-6 (1994).
    40. Jacoby, L. B. et al. Exon scanning for mutation of the NF2 gene in schwannomas. Hum Mol Genet 3, 413-9 (1994).
    41. Sainz, J. et al. Mutations of the neurofibromatosis type 2 gene and lack of the gene product in vestibular schwannomas. Hum Mol Genet 3, 885-91 (1994).
    42. Thomas, G. et al. Neurofibromatosis type 2. Eur J Cancer 30A, 1981-7 (1994).
    43. Takeuchi, K., Kawashima, A., Nagafuchi, A. & Tsukita, S. Structural diversity of band 4.1 superfamily members. J Cell Sci 107 ( Pt 7), 1921-8 (1994).
    44. Tsukita, S., Oishi, K., Sato, N., Sagara, J. & Kawai, A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126, 391-401 (1994).
    45. Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135, 37-51 (1996).
    46. Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J Cell Biol 140, 885-95 (1998).
    47. Yonemura, S., Nagafuchi, A., Sato, N. & Tsukita, S. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J Cell Biol 120, 437-49 (1993).
    48. Heiska, L. et al. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273, 21893-900 (1998).
    49. Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382, 265-8 (1996).
    50. Serrador, J. M. et al. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J Cell Biol 138, 1409-23 (1997).
    51. Algrain, M., Turunen, O., Vaheri, A., Louvard, D. & Arpin, M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol 120, 129-39 (1993).
    52. Winckler, B., Gonzalez Agosti, C., Magendantz, M. & Solomon, F. Analysis of a cortical cytoskeletal structure: a role for ezrin-radixin-moesin (ERM proteins) in the marginal band of chicken erythrocytes. J Cell Sci 107 ( Pt 9), 2523-34 (1994).
    53. Turunen, O., Wahlstrom, T. & Vaheri, A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol 126, 1445-53 (1994).
    54. Pestonjamasp, K. et al. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes. Mol Biol Cell 6, 247-59 (1995).
    55. Sainio, M. et al. Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J Cell Sci 110 ( Pt 18), 2249-60 (1997).
    56. Xu, H. M. & Gutmann, D. H. Merlin differentially associates with the microtubule and actin cytoskeleton. J Neurosci Res 51, 403-15 (1998).
    57. Martin, M. et al. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J Cell Biol 128, 1081-93 (1995).
    58. Henry, M. D., Gonzalez Agosti, C. & Solomon, F. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains. J Cell Biol 129, 1007-22 (1995).
    59. Edwards, K. A. et al. Identification of Drosophila cytoskeletal proteins by induction of abnormal cell shape in fission yeast. Proc Natl Acad Sci U S A 91, 4589-93 (1994).
    60. Tsukita, S. & Yonemura, S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr Opin Cell Biol 9, 70-5 (1997).
    61. Tsukita, S. & Yonemura, S. ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci 22, 53-8 (1997).
    62. Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 274, 34507-10 (1999).
    63. Sato, N., Yonemura, S., Obinata, T. & Tsukita, S. Radixin, a barbed end-capping actin-modulating protein, is concentrated at the cleavage furrow during cytokinesis. J Cell Biol 113, 321-30 (1991).
    64. Gary, R. & Bretscher, A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 6, 1061-75 (1995).
    65. Takaishi, K., Sasaki, T., Kameyama, T., Tsukita, S. & Takai, Y. Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene 11, 39-48 (1995).
    66. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79, 507-13 (1994).
    67. Amano, M. et al. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 271, 648-50 (1996).
    68. Watanabe, G. et al. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science 271, 645-8 (1996).
    69. Gould, K. L., Cooper, J. A., Bretscher, A. & Hunter, T. The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J Cell Biol 102, 660-9 (1986).
    70. Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J Biol Chem 270, 31377-85 (1995).
    71. Chen, J., Cohn, J. A. & Mandel, L. J. Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc Natl Acad Sci U S A 92, 7495-9 (1995).
    72. Matsui, T., Yonemura, S. & Tsukita, S. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9, 1259-62 (1999).
    73. Ersfeld, K. & Gull, K. Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci 114, 141-148 (2001).
    74. Hill, K. L., Hutchings, N. R., Grandgenett, P. M. & Donelson, J. E. T lymphocyte-triggering factor of african trypanosomes is associated with the flagellar fraction of the cytoskeleton and represents a new family of proteins that are present in several divergent eukaryotes. J Biol Chem 275, 39369-78 (2000).
    75. Whitmore, S. A. et al. Characterization and screening for mutations of the growth arrest-specific 11 (GAS11) and C16orf3 genes at 16q24.3 in breast cancer. Genomics 52, 325-31 (1998).
    76. Hutchings, N. R., Donelson, J. E. & Hill, K. L. Trypanin is a cytoskeletal linker protein and is required for cell motility in African trypanosomes. J Cell Biol 156, 867-77 (2002).
    77. Lantz, V. A. & Miller, K. G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J Cell Biol 140, 897-910 (1998).
    78. Lee, J. S. & Gotlieb, A. I. Microtubule-actin interactions may regulate endothelial integrity and repair. Cardiovasc Pathol 11, 135-40 (2002).
    79. Gonzalez, M., Cambiazo, V. & Maccioni, R. B. The interaction of Mip-90 with microtubules and actin filaments in human fibroblasts. Exp Cell Res 239, 243-53 (1998).

    下載圖示 校內:2004-09-18公開
    校外:2004-09-18公開
    QR CODE