簡易檢索 / 詳目顯示

研究生: 王武傑
Wang, Wu-Chieh
論文名稱: 複合材料含奈米碳管與石墨烯之分子動力學模擬
Molecular dynamics simulation of composite materials containing carbon nanotubes and graphene
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 146
中文關鍵詞: 分子動力學第一原理計算機器學習石墨烯奈米碳管複合材料高分子材料
外文關鍵詞: Molecular dynamics simulation, First principle calculation, Machine learning, Graphene, Carbon Nanotube, Composite Materials, Polymer
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管(CNT)和單層石墨烯因其具有優異的力學、導熱和電傳導性質而廣為人知, 將CNT和/或石墨烯做為添加物的複合材料可以擁有比其基材更良好的行為表現,如有效地提升彈性模數、抗拉與抗壓的強度、韌性、阻尼、導熱和導電性質等。本論文藉 由第一原理計算探討CNT的電性,電子在CNT中因彈道傳輸模式,使其具有優異的導電性質。此外,由於彈道聲子傳輸,CNT和石墨烯也同時具有良好的熱導率。本研究將 混合型的CNT-石墨烯(HCG)結構嵌入基材中,例如水化矽酸鈣(C-S-H) 或高分子材料尼龍-6,並將此複合材料以分子動力學(MD)進行模擬分析,發現整體的力學性質和熱性 質,皆因HCG而有效地提升。根據計算結果,嵌入HCG 的C-S-H (CSHnHCG)在各個單軸加載下,在應變0.05時,等效楊氏模數和強度皆有2到3倍的增加。其中當加載方向平 行於CNT走向,因碳管受到圍束效果,在受壓時強度和楊氏模數可達原先約5倍,其破壞模式主要是HCG結構的挫屈行為,而受拉時應力和楊氏模數可達原先的約4倍,最終 則因HCG的解體而破壞。此外,嵌入在尼龍-6中的HCG,若其CNT直徑過小,導致周圍尼龍-6分子具有足夠的力量吸引彼此,進而嚴重擠壓CNT,破壞其管狀結構,使整體的 力學行為及熱傳導能力無法同CSHnHCG一樣有效地提升,此現象可類比蟒蛇獵食理論解釋之。在熱性質計算中,本文透過Green-Kubo平衡法求得在環境溫度300K時的熱傳 導係數,CSHnHCG從24.87提升至232.48 W·m-1·K-1,而NlonnHCG從16.04提升至33.67 W·m-1·K-1。本文亦探討以機器學習建立神經網路勢能(NNP)之方法,以量子分子動力學 計算的結果做為訓練數據庫,訓練神經網路的權重參數,並應用此參數於水分子之計算模擬。

    Carbon nanotubes (CNT’s) and single layers of graphene are widely known for their superior mechanical, thermal and electrical properties. Composite materials containing the CNT’s and/or graphene may exhibit enhanced effective properties, such as enhanced elastic modulus. In this work, the electric properties of CNT’s is studied via the first-principle calculations. Due to the ballistic mode of electron transport, exceptionally good electric conductivity is found in CNT’s. Similarly, thermal conductivity in CNT’s and graphene can be largely increased due to the ballistic phonon transport. When hybrid CNT-graphene (HCG) structures are embedded in a matrix, such as calcium-silicate-hydrate (CSH) or polymer nylon-6, the overall mechanical and thermal properties are studied via conventional molecular dynamics (MD) simulation. It is found that structured HCG inclusion can increase the effective Young’s modulus and strength by a factor of 2 to 3. When loading direction is parallel to the CNT’s, compressive strength and Young’s modulus were increased by a factor of 5. Its tensile strength and Young’s modulus were increased by a factor of 4. Under compression, the failure mode of the composite is dominated by buckling of the HCG structures. Under large tension, the composite fails due to the fracture of the HCG inclusion. When the radius of CNT is small, nylon chain molecules may behave like a python snake to break CNT by severe wrapping. It is found that, from the Green-Kubo method, the thermal conductivity coefficient of CSGnHCG increases from 24.87 to 232.48 W m-1 K-1, and that of NylonnHCG increases from 16.04 to 33.67 W m-1 K-1. Neural network interatomic potentials were studied via machine learning techniques to convert atomic interactions from quantum-molecular-dynamics simulations into neural network weights and biases for classical MD simulations.

    CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Goals and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1.2.1 Sensational materials - carbon nanotubes and graphene . . . . . . . . . 2 1.2.2 C-S-H research by MD . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Theoretical Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The first principle theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 Honenbrerg-Kohn and Kohn-Sham ansatz . . . . . . . . . . . . . . . 11 2.3.2 The exchange-correlation functional . . . . . . . . . . . . . . . . . . . 13 2.4 Quantum transport for electronic conductivity . . . . . . . . . . . . . . . . . . 13 2.4.1 Electron transfer mechanism in conductor . . . . . . . . . . . . . . . . 14 2.4.2 Non-equilibrium Green’s function . . . . . . . . . . . . . . . . . . . . 15 2.4.3 Total current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.4 The density of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Mechanical loss tangent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.7 Thermal conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Computational information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.1 Setup of the electronic transport . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Atomistic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Hybrid CNTs/Graphene . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 C-S-H model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 Nylon model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Neural network potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 4.1 Electronic transport in single-walled carbon nanotubes . . . . . . . . . . . . . 40 4.1.1 System establishment and clarification . . . . . . . . . . . . . . . . . . 40 4.1.2 Ballistic transport properties in single-walled carbon nanotubes . . . . 43 4.2 Hybrid composite material CNTs/Graphene . . . . . . . . . . . . . . . . . . . 47 4.2.1 Model building and optimization . . . . . . . . . . . . . . . . . . . . . 47 4.2.2 Multiscale mechanical simulation of hybrid CNTs/Graphene . . . . . . 51 4.2.2.1 Multiscale mechanical performance of HCG . . . . . . . . . 51 4.2.2.2 Effects of loading rates . . . . . . . . . . . . . . . . . . . . 56 4.3 Mechanical properties of hybrid CNT/Graphene structure on C-S-H . . . . . . 65 4.3.1 C-S-H and hybrid CNTs/Graphene composite model . . . . . . . . . . 65 4.3.2 Uniaxial loading tests on the CSH and composite model . . . . . . . . 67 4.3.3 Oscillatory loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Mechanical properties of hybrid CNT/Graphene structure on nylon . . . . . . . 76 4.4.1 Mechanical properties of nylon . . . . . . . . . . . . . . . . . . . . . 76 4.4.2 Non-bonded interface interactions . . . . . . . . . . . . . . . . . . . . 78 4.4.3 Nylon and hybrid CNTs/Graphene composite model . . . . . . . . . . 81 4.4.4 Uniaxial loading tests on the nylon and composite model . . . . . . . . 84 4.4.5 Oscillatory loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5 Thermal properties of CNT/Graphene structure on nylon and CSH . . . . . . . 93 4.6 Neural network potentials application . . . . . . . . . . . . . . . . . . . . . . 94 4.6.1 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.6.2 Neural network potential training . . . . . . . . . . . . . . . . . . . . 96 5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 APPENDICES Appendix A: Python code 1: From LAMMPS to SIESTA FDF format . . . . . . . 107 Appendix B: Python code 2: From SIESTA to neural network potential . . . . . . 110 Appendix C: Presentation slides . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

    [1] J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler, and X. Zhao. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature materials, 12(4):321, 2013.
    [2] I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan. Composites with carbon nanotubes and graphene: An outlook. Science, 362(6414):547–553, 2018.
    [3] R. A. Bell. Conduction in Carbon Nanotube Networks: Large-Scale Theoretical Simula- tions. Springer, 2015.
    [4] L. Shi. Nonresistive heat transport by collective phonon flow. Science, 364(6438):332– 333, 2019.
    [5] S. Huberman, R. A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A. A. Maznev, G. Chen, and K. A. Nelson. Observation of second sound in graphite at temperatures above 100 k. Science, page eaav3548, 2019.
    [6] T Zhou, K Ioannidou, F. J. Ulm, M. Z. Bazant, and R. J. M. Pellenq. Multiscale porome- chanics of wet cement paste. Proceedings of the National Academy of Sciences, page 201901160, 2019.
    [7] R. J.-M. Pellenq, A. Kushima, R. Shahsavari, K. J. Van Vliet, M. J. Buehler, S. Yip, and F.-J. Ulm. A realistic molecular model of cement hydrates. Proceedings of the National Academy of Sciences, 106(38):16102–16107, 2009.
    [8] Z. H. Lin. Molecular dynamics simulation of CSH under various loading and thermal conditions. Master’s thesis, National Cheng Kung University, June 2017.
    [9] Y. X. Wu. Fracture behavior of calcium-silicate-hydrate via molecular dynamics simula- tion. Master’s thesis, National Cheng Kung University, June 2018.
    [10] S. Datta. Electronic transport in mesoscopic systems. Cambridge university press, 1997.
    [11] S. Datta. Quantum transport: atom to transistor. Cambridge university press, 2005.
    [12] H. C. Berg. Random walks in biology. Princeton University Press, 1993.
    [13] M. Brandbyge, J. L. Mozos, P. Ordejo´n, J. Taylor, and K. Stokbro. Density-functional method for nonequilibrium electron transport. Physical Review B, 65(16):165401, 2002.
    [14] D. S. Fisher and P. A. Lee. Relation between conductivity and transmission matrix. Phys- ical
    Review B, 23(12):6851, 1981.
    [15] M. Di Ventra. Electrical transport in nanoscale systems. Electrical Transport in Nanoscale Systems, by Massimiliano Di Ventra, Cambridge, UK: Cambridge University Press, 2008, 2008.
    [16] C. Kittel, P. McEuen, and P. McEuen. Introduction to solid state physics, volume 8. Wiley New York, 1976.
    [17] R. S. Lakes. Viscoelastic materials. Cambridge University Press, New York, 2009.
    [18] LAMMPS. GreenKubo. https://lammps.sandia.gov/doc/compute_heat_flux. html. [Online; accessed 30-April-2019].
    [19] LAMMP molecular dynamics simulator. https://lammps.sandia.gov/. [Online; ac- cessed 30-April-2019].
    [20] SIESTA. https://departments.icmab.es/leem/siesta/. [Online; accessed 30- April-2019].
    [21] K. Stokbro, J. Taylor, M. Brandbyge, and P. Ordejon. Transiesta: a spice for molecular electronics. Annals of the New York Academy of Sciences, 1006(1):212–226, 2003.
    [22] Github. n2p2. https://github.com/CompPhysVienna/n2p2. [Online; accessed 30- April-2019].
    [23] A. Singraber, J. Behler, and C. Dellago. A library-based lammps implementation of high-dimensional neural network potentials. Journal of chemical theory and computation, 2019.
    [24] Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A. R. O. Raji, and C. Kittrell. A seamless three-dimensional carbon nanotube graphene hybrid material. Nature communications, 3:1225, 2012.
    [25] S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of chemical physics, 112(14):6472–6486, 2000.
    [26] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott. A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. Journal of Physics: Condensed Matter, 14(4):783, 2002.
    [27] R. Shahsavari. Hierarchical Modeling of Structure and Mechanics of Cement Hydrate. PhD thesis, Massachusetts Institute of Technology, February 2011.
    [28] Wikipedia. (Nylon). https://zh.wikipedia.org/wiki/%E5%B0%BC%E9%BE%99. [On- line; accessed
    23-April-2019].
    [29] P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, and A. T. Hagler.
    Structure and energetics of ligand binding to proteins: Escherichia coli dihydro- folate reductase-trimethoprim, a drug-receptor system. Proteins: Structure, Function, and Bioinformatics, 4(1):31–47, 1988.
    [30] B. Kolb, L. C. Lentz, and A. M. Kolpak. Discovering charge density functionals and structure-property relationships with prophet: A general framework for coupling machine learning and first-principles methods. Scientific reports, 7(1):1192, 2017.
    [31] I. Sukuba, L. Chen, M. Probst, and A. Kaiser. A neural network interface for dl poly and its application to liquid water. Molecular Simulation, pages 1–6, 2018.
    [32] The atomic energy network. http://ann.atomistic.net/. [Online; accessed 30-April- 2019].
    [33] The DLPOLY Molecular Simulation Package. https://www.scd.stfc.ac.uk/Pages/ DL_POLY.aspx.
    [Online; accessed 30-April-2019].
    [34] Github. prophet. https://github.com/biklooost/PROPhet. [Online; accessed 30- April-2019].
    [35] J. Behler and M. Parrinello. Generalized neural-network representation of high- dimensional potential-energy surfaces. Physical review letters, 98(14):146401, 2007.
    [36] J. Behler. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. The Journal of chemical physics, 134(7):074106, 2011.
    [37] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. Geerligs, and C. Dekker. Individual single-wall carbon nanotubes as quantum wires. Nature, 386(6624):474, 1997.
    [38] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. S-malley. Single-electron transport in ropes of carbon nanotubes. Science, 275(5308):1922– 1925, 1997.
    [39] F. D. Novaes, R. Rurali, and P. Ordejo´n. Electronic transport between graphene layers covalently connected by carbon nanotubes. ACS nano, 4(12):7596–7602, 2010.
    [40] A. Gooneie, S. Schuschnigg, and C. Holzer. A review of multiscale computational methods in polymeric materials. Polymers, 9(1):16, 2017.
    [41] R. Komanduri, N. Chandrasekaran, and L. M. Raff. Molecular dynamics (md) simulation of uniaxial tension of some single-crystal cubic metals at nanolevel. International Journal of Mechanical Sciences, 43(10):2237–2260, 2001.
    [42] H. Xin and Q. Han. The strain rate effect of perfect and defective single-walled carbon nanotubes under axial compression. Journal of Computational and Theoretical Nanoscience,
    9(3):371–378, 2012.
    [43] J. Weiss, L. Girard, F. Gimbert, D. Amitrano, and D. Vandembroucq. (finite) statistical
    size effects on compressive strength. Proceedings of the National Academy of Sciences,
    111(17):6231–6236, 2014.
    [44] P. C. A¨ıtcin. High performance concrete. CRC press, 1998.
    [45] A. S. Ezeldin and P. N. Balaguru. Normal-and high-strength fiber-reinforced concrete under
    compression. Journal of materials in civil engineering, 4(4):415–429, 1992.
    [46] V. Wiktor and H. M. Jonkers. Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites, 33(7):763–770, 2011.
    [47] X. Yu and E. Kwon. A carbon nanotube/cement composite with piezoresistive properties.Smart Materials and Structures, 18(5):055010, 2009.
    [48] Z. S. Tabatabaei, J. S. Volz, J. Baird, B. P. Gliha, and D. I. Keener. Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading. International Journal of Impact Engineering, 57:70–80, 2013.
    [49] H. Kim, I. W. Nam, and H. K. Lee. Enhanced effect of carbon nanotube on mechanical and electrical properties of cement composites by incorporation of silica fume. Composite Structures, 107:60–69, 2014.
    [50] P. Keina¨nen, A. Das, and J. Vuorinen. Further enhancement of mechanical properties of conducting rubber composites based on multiwalled carbon nanotubes and nitrile rubber by solvent treatment. Materials, 11(10):1806, 2018.
    [51] InfoWorld. https://is.gd/aRRm9B. [Online; accessed 16-May-2019].
    [52] LAMMPS. GCMC. https://lammps.sandia.gov/doc/fix_gcmc.html. [Online; ac- cessed 30-April-2019].
    [53] n2p2. a neural network potential package. https://compphysvienna.github.io/ n2p2/. [Online;
    accessed 29-April-2019].
    [54] M. Orsi. Comparative assessment of the elba coarse-grained model for water. Molecular Physics, 112(11):1566–1576, 2014.
    [55] M. J. D. Powell. Restart procedures for the conjugate gradient method. Mathematical programming, 12(1):241–254, 1977.

    無法下載圖示 校內:2024-08-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE