簡易檢索 / 詳目顯示

研究生: 陳熙涵
Chen, Hsi-Han
論文名稱: 以分子動力學方法研究材料之熱學性質
The study on properties of materials using molecular dynamics method
指導教授: 王清正
Wang, Ching-Chung
共同指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 分子動力學奈米碳管奈米薄膜熔點
外文關鍵詞: molecular dynamics, nano-carbon-tube, nano-film, melting temperature
相關次數: 點閱:127下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來低尺度奈米結構如奈米碳管和奈米薄膜,因具有獨特的尺寸效應、奈米尺寸等優點,,因此已漸被應用於微奈米電子及機電系統中。然因高功能及高效能的需求造成系統元件功率的大幅增加更由於高攜帶性極高電性效能的要求使得原件尺寸日益微縮,因此系統元件走向高功率密度的趨勢。高功率密度不可避免帶來高溫,高溫可能改變材料之物理性質,且降低電子元件的電性品質。因此,奈米材料之熱機械及熱力性質與熱力行為對其工業應用有重大的影響。文獻上,針對奈米材料溫度特性模擬常採用分子動力學法搭配定原子數、定體積及定溫熱容法。這些熱容法源自於不考慮原子間的交互作用力之單原子氣體模型,不同於稀薄氣體,強鍵結系統(如分子、晶體及固體)原子間的交互作用力並不可忽略。分子動力學中,其速度為隨機分佈且平衡時將滿足馬克斯威爾分佈,而在模型建立過程中,是以氣體動力學為基礎。當建立模型並非為氣體時,其速度分佈是否仍符合馬克斯威爾分佈是想得知的部分。文獻指出,在不同壓力下的材料熔點皆為不同。除了壓力對熔點溫度的影響之外,透過拉伸行為來觀察薄膜的熔點變化。

    Due to the improved manufacturing techniques, the applications of nano-materials in various electronic devices have become more and more popular. Since the temperature cycles are usually involved in the production process, it is important to understand the thermal properties of nano-materials (ex: nano-film and nano-carbon-tube) so that the designers could have appropriate guideline for device design. Hence, this research is aim to explore the size and difference dimensions of nano-materials effects on the thermal properties and melting temperature and research the velocity of copper cubic and nano-carbon-tube for using molecular dynamics methods.

    目錄 致謝................I 摘要...............II 英文摘要.............III 目錄...............IV 表目錄...............VII 圖目錄..............VIII 第一章 緒論..............1 前言................1 1.1 文獻回顧...........2 1.1.1 分子動力學...........2 1.1.2 氣體動力學...........3 1.1.3 德拜理論...........5 1.2.3.1三維的態密度...........6 1.2.3.2德拜模型的態密度與德拜溫度........7 1.1.4 熔點.............10 第二章 分子動力學理論與數值模擬.........11 2.1 分子動力學基本假設...........11 2.2 勢能函數.............11 2.3 週期性邊界條件與最小映像法則.......13 2.4 截斷半徑法............15 2.5 運動方程式.............18 2.6 Gear’s五階預測修正法..........19 2.7 系統速度與溫度的修正.........21 第三章 原子模型與模擬方法..........22 3.1 系統之速度與速率分佈...........22 3.1.1銅塊材之原子模型...........22 3.1.2銅塊材之系統平衡與程式驗證.....23 3.1.3單層奈米碳管之原子模型......23 3.1.4單層奈米碳管之系統平衡與程式驗證....26 3.2 德拜理論.........27 3.2.1銅塊材之原子模型........27 3.2.2 銅塊材之系統平衡與程式驗證....27 3.3 熔點溫度...........28 3.3.1銅塊材之原子模型.......28 3.3.2銅塊材之系統平衡與程式驗證.....29 3.4 薄膜拉伸...........30 3.4.1銅薄膜之原子模型.......30 第四章 模擬結果分析與討論..........31 4.1 銅塊材的系統速度與速率分佈.......31 4.2 單層奈米碳管的系統速度與..速率分佈...36 4.3 銅塊材德拜溫度.........43 4.4 銅塊材熔點.........45 4.5 銅薄膜拉伸與壓伸.........47 第五章 方均根速率、最大出現速率、平均速率.....50 5.1 銅塊材...........50 5.2 奈米碳管...........54 第六章 奈米碳管之尺寸效應........60 6.1 長度的尺寸效應.........61 6.2 管徑的尺寸效應.........66 6.3 相似模型比較.........68 第七章 結論與未來工作..........71 參考文獻..............73

    [1] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes .4. The Equations of Hydrodynamics," Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
    [2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of State Calculations by Fast Computing Machines," Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.
    [3] B. J. Alder and T. E. Wainwright, "Phase Transition for a Hard Sphere System," Journal of Chemical Physics, vol. 27, pp. 1208-1209, 1957.
    [4] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics .1. General Method," Journal of Chemical Physics, vol. 31, pp. 459-466, 1959.
    [5] F. Richarz, "The theory of Dulong and Petit's law," Zeitschrift Fur Anorganische Chemie, vol. 58, pp. 356-374, Jun 1908.
    [6] C. Kittel, "Thermal Physics," American Journal of Physics, vol. 39, pp. 847-&, 1971.
    [7] P. Buffat and J. P. Borel, "Size Effect on Melting Temperature of Gold Particles," Physical Review A, vol. 13, pp. 2287-2298, 1976.
    [8] G. Manai and F. Delogu, "Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems," Physica B-Condensed Matter, vol. 392, pp. 288-297, Apr 15 2007.
    [9] A. Adnan and C. T. Sun, "Effect of surface morphology and temperature on the structural stability of nanoscale wavy films," Nanotechnology, vol. 19, Aug 6 2008.
    [10] R.J. Arsenault and J.R. Beeler,"Computer Simulation in Material Science", ASM International, USA, 1988
    [11] R. Smith and M. Jakas, "Atomic and Ion Collisions in Solids and At Surfaces: Theory, Simulation and Applications", Cambridge University Press, USA, 1997
    [12] J.E. Lennard-Jones, "The Determination of Molecular Fields."FromtheVariation of the Viscosity of a Gas with Temperature," Proceedings of the Royal Society of London, 106A, 441, 1924; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Roya l75 Society of London, Vol. 106A, pp. 463, 1924
    [13] S.M. Foiles, M.I. Baskes and M.S. Daw, “Embedded-atom-method Functionsor the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys”, Physical Review B, Vol. 33, pp. 7983, 1986
    [14] M.S. Daw, S.M. Foiles and M.I. Baskes, “The Embedded-AtomMethod - A Review of Theory and Applications”, Materials ScienceReports, Vol. 9, pp. 251, 1993
    [15] M.I. Baskes, J.S. Nelson and A.F. Wright, “Semi-empirical Modified Embedded-atom Potentials for Silicon and Germanium”, Physical Review B, Vol. 40, pp. 6085, 1989
    [16] M.I. Baskes, “Modified Embedded-atom Potentials for Cubic Materials and Impurities”, Physical Review B, Vol. 46, pp. 2727,1992
    [17] J.M. Haile, “Molecular Dynamics Simulation: Elementary Methods”,JohWiely & Sons, Inc., USA, 1992
    [18] A. Rahman, “Correction in the Motion of Atoms in Liquid Argon”,Physical Review, Vol. 136, pp. 405, 1964

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE