| 研究生: |
陳熙涵 Chen, Hsi-Han |
|---|---|
| 論文名稱: |
以分子動力學方法研究材料之熱學性質 The study on properties of materials using molecular dynamics method |
| 指導教授: |
王清正
Wang, Ching-Chung |
| 共同指導教授: |
張怡玲
Chang, I-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 分子動力學 、奈米碳管 、奈米薄膜 、熔點 |
| 外文關鍵詞: | molecular dynamics, nano-carbon-tube, nano-film, melting temperature |
| 相關次數: | 點閱:127 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來低尺度奈米結構如奈米碳管和奈米薄膜,因具有獨特的尺寸效應、奈米尺寸等優點,,因此已漸被應用於微奈米電子及機電系統中。然因高功能及高效能的需求造成系統元件功率的大幅增加更由於高攜帶性極高電性效能的要求使得原件尺寸日益微縮,因此系統元件走向高功率密度的趨勢。高功率密度不可避免帶來高溫,高溫可能改變材料之物理性質,且降低電子元件的電性品質。因此,奈米材料之熱機械及熱力性質與熱力行為對其工業應用有重大的影響。文獻上,針對奈米材料溫度特性模擬常採用分子動力學法搭配定原子數、定體積及定溫熱容法。這些熱容法源自於不考慮原子間的交互作用力之單原子氣體模型,不同於稀薄氣體,強鍵結系統(如分子、晶體及固體)原子間的交互作用力並不可忽略。分子動力學中,其速度為隨機分佈且平衡時將滿足馬克斯威爾分佈,而在模型建立過程中,是以氣體動力學為基礎。當建立模型並非為氣體時,其速度分佈是否仍符合馬克斯威爾分佈是想得知的部分。文獻指出,在不同壓力下的材料熔點皆為不同。除了壓力對熔點溫度的影響之外,透過拉伸行為來觀察薄膜的熔點變化。
Due to the improved manufacturing techniques, the applications of nano-materials in various electronic devices have become more and more popular. Since the temperature cycles are usually involved in the production process, it is important to understand the thermal properties of nano-materials (ex: nano-film and nano-carbon-tube) so that the designers could have appropriate guideline for device design. Hence, this research is aim to explore the size and difference dimensions of nano-materials effects on the thermal properties and melting temperature and research the velocity of copper cubic and nano-carbon-tube for using molecular dynamics methods.
[1] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes .4. The Equations of Hydrodynamics," Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of State Calculations by Fast Computing Machines," Journal of Chemical Physics, vol. 21, pp. 1087-1092, 1953.
[3] B. J. Alder and T. E. Wainwright, "Phase Transition for a Hard Sphere System," Journal of Chemical Physics, vol. 27, pp. 1208-1209, 1957.
[4] B. J. Alder and T. E. Wainwright, "Studies in Molecular Dynamics .1. General Method," Journal of Chemical Physics, vol. 31, pp. 459-466, 1959.
[5] F. Richarz, "The theory of Dulong and Petit's law," Zeitschrift Fur Anorganische Chemie, vol. 58, pp. 356-374, Jun 1908.
[6] C. Kittel, "Thermal Physics," American Journal of Physics, vol. 39, pp. 847-&, 1971.
[7] P. Buffat and J. P. Borel, "Size Effect on Melting Temperature of Gold Particles," Physical Review A, vol. 13, pp. 2287-2298, 1976.
[8] G. Manai and F. Delogu, "Numerical simulations of the melting behavior of bulk and nanometer-sized Cu systems," Physica B-Condensed Matter, vol. 392, pp. 288-297, Apr 15 2007.
[9] A. Adnan and C. T. Sun, "Effect of surface morphology and temperature on the structural stability of nanoscale wavy films," Nanotechnology, vol. 19, Aug 6 2008.
[10] R.J. Arsenault and J.R. Beeler,"Computer Simulation in Material Science", ASM International, USA, 1988
[11] R. Smith and M. Jakas, "Atomic and Ion Collisions in Solids and At Surfaces: Theory, Simulation and Applications", Cambridge University Press, USA, 1997
[12] J.E. Lennard-Jones, "The Determination of Molecular Fields."FromtheVariation of the Viscosity of a Gas with Temperature," Proceedings of the Royal Society of London, 106A, 441, 1924; “The Determination of Molecular Fields. II. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Roya l75 Society of London, Vol. 106A, pp. 463, 1924
[13] S.M. Foiles, M.I. Baskes and M.S. Daw, “Embedded-atom-method Functionsor the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys”, Physical Review B, Vol. 33, pp. 7983, 1986
[14] M.S. Daw, S.M. Foiles and M.I. Baskes, “The Embedded-AtomMethod - A Review of Theory and Applications”, Materials ScienceReports, Vol. 9, pp. 251, 1993
[15] M.I. Baskes, J.S. Nelson and A.F. Wright, “Semi-empirical Modified Embedded-atom Potentials for Silicon and Germanium”, Physical Review B, Vol. 40, pp. 6085, 1989
[16] M.I. Baskes, “Modified Embedded-atom Potentials for Cubic Materials and Impurities”, Physical Review B, Vol. 46, pp. 2727,1992
[17] J.M. Haile, “Molecular Dynamics Simulation: Elementary Methods”,JohWiely & Sons, Inc., USA, 1992
[18] A. Rahman, “Correction in the Motion of Atoms in Liquid Argon”,Physical Review, Vol. 136, pp. 405, 1964
校內:立即公開