簡易檢索 / 詳目顯示

研究生: 劉晉甫
Liou, Jin-Fu
論文名稱: 低摩擦油壓伺服滑台之設計與控制
Design and Control of a Low-friction Servo-hydraulic Slider
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 81
中文關鍵詞: 伺服油壓滑台摩擦補償低摩擦設計
外文關鍵詞: servo-hydrualic, slider, friction compensation, low-friction design
相關次數: 點閱:79下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究目標主要在於討論如何改良液壓滑台之摩擦力對定位精度的影響,改良方式可以設計低摩擦硬體與控制補償。本文所設計的低摩擦油壓伺服滑台,是以使用聚四氟乙烯(PTFE)滑動密封的油壓缸並以線性滑軌以便達到油壓滑台的低摩擦目標,經由量測滑台於各種工作條件下之摩擦特性與多點定位控制實驗結果,本文所設計之低摩擦滑台相較於一般油壓滑台於各項響應性能均較佳,但是在達到目標點以後易因中位飄移發生滑動。根據系統摩擦特性,對低速運動時易發生之黏滯摩擦設計補償訊號。由實驗結果可知,無論最大靜摩擦增益補償或是顫震訊號的控制器均可使一般的滑台也能達到1μm定位精度。

    The purpose of this paper is to discuss how to improve the position accuracy effect by the friction force. The improving methods can be designing a low-friction hardware and compensation in controller. The hydraulic slider designed in this paper is with the PTFE slipper-seal and linear guide so it can achieve the low-friction goal. After measuring the friction force of the slider in each kind of working condition and multi-point positioning, the control performance of the slider designed in this paper is better than the general hydraulic slider, but when the slider reaches the goal position, it slips easily because of the null point draft. According to the friction character of the system, we can try to design the compensation signal for the stick friction due to the low working velocity. In the result of the control experiment, the controller with either the max static friction compensation or the dither signal can let the general slider achieve 1μm position accuracy.

    目錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 XI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 研究目標與本文架構 3 第二章 液壓伺服滑台之系統架構 5 2-1 微電腦與控制介面 7 2-2 感測器 7 2-3 電液伺服閥 9 2-4 液壓滑台 11 2-5 實驗設備元件 12 第三章 低摩擦油壓滑台之設計 13 3-1 油壓滑台的運動特性 13 3-2 油壓滑台之構造與低摩擦化方式 15 3-3 線性滑軌 20 3-4 油壓缸低摩擦設計 23 第四章 摩擦力量測原理與實驗結果 27 4-1 系統模式推導 27 4-2 油壓缸摩擦力的量測原理 32 4-3 量測結果與討論 35 第五章 定位控制 45 5-1 低摩擦滑台之定位控制與實驗結果 46 5-2 一般油壓滑台之定位控制與實驗結果 56 5-3 具摩擦補償之PD控制器設計 65 第六章 結論 74 參考文獻 77 自述 81

    參考文獻

    [1]H.E.Merritt, " Hydraulic Control System ", John Wiley & Sons,1967.
    [2]J.Watton, " Fluid Power System, Modeling, Simulation, Analog &Micro-computer Computer Control ", Prentice-Hall,1987.
    [3]J.Watton, " The Generalized Response of Servovalve-Controlled, Singled-Rod, Linear Actuators and the Influence of Transmission LineDynamics ", Trans. ASME, J. of DSMC, Vol. 106, pp. 157-162 1984.
    [4]練福人, "閥控非對稱液壓缸之分析", 國立清華大學動機所論文,1975.
    [5]陸冠群, "電液閥控非對稱液壓缸之壓力特性分析與位置控制", 國立清華大學動機所論文,1988.
    [6]Garett A. Sohl and James E. Bobrow,”Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem”,IEEE Trabsactions on Control Systems Technology, Volume: 7, Issue: 2, pp. 238 –247, March 1999.
    [7]Andrew Alleyne, Rui Liu.”A Simplified approach to force control for electro-hydraulic systems”, Control Engineering Practice, pp. 1347-1356, August 2000.
    [8]Huang,C.H. and Wang,Y.T.(1996),”The simplified STR applied to an asymmetric hydraulic servo system”, International Journal of Computer Applications in Technology, Vol. 9,Nos 5/6, p 249-258.
    [9]J.Watton, ”A Digital Compensator Design for Electrohydraulic Single-Rod Cylinder Position Control System ”, Trans. ASME, J. of DSMC, Vol. 112, pp. 403,Sep., 1990.
    [10]M.C.Shin and Y.R.Sheu, ”The Adaptive Position Control of an Electro-Hydraulic Servo Cylinder ”, JSME Int. J., Ser.C, Vol.34 No.3, pp. 370-376, Sep. 1991.
    [11]Ying-Tsai Wang, Chih-Hsiung Huang, ”LQG Self-Tuner Design for an Asymmetric Hydraulic System”, JSME Int.J., Ser.C, Vol.38 No.3, pp. 625-632, 1991.
    [12]許朝勝, "長行程單桿液壓缸於垂直負荷之位置伺服控制研究",國立成功大學機械所論文,1999.
    [13]Young-Hyun Lee, R. Kopp, ”Application of Fuzzy Control for a Hydraulic Forging Machine”, Fuzzy sets and systems, V118, n1, pp. 99-108, Feb, 2001.
    [14]Knohl. T, Unbehauen, ”Adaptive position control of electrohydraulic servo systems using ANN”, Mechatronics, v 10, n 1-2, pp. 127-143, Feb. 2000.
    [15]Ghazy M.A,.”Variable structure control for electrohydraulic position servo system”, Industrial Electronics Society, 2001. IECON '01. The 27th Annual Conference of the IEEE, Vol. 3, pp. 2194 -2198, 29 Nov.-2 Dec, 2001.
    [16]Cho S.H. , Edge K.A., ”Adaptive sliding mode tracking control of hydraulic servo-systems with unknown non-linear friction and modeling error”, Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, v 214, n 4, pp. 247-257, 2000.
    [17]Bin Yao, Fanping Bu, Reedy, J., Chiu, G.T.-C, ” Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments”, IEEE/ASME Transactions on Mechatronics, Volume: 5, Issue: 1, pp.79 –91, March 2000.
    [18]Niksefat N., Sepehri N., ”A QFT fault-tolerant control for electrohydraulic positioning systems”, IEEE Transactions on Control Systems Technology, Volume: 10, Issue: 4, pp.626 –632, July 2002.
    [19]D. Karnopp,”Computer simulation of slip-stick friction in mechanical dynamic systems”, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 107, pp.100-103, 1985.
    [20]D. Haessig and B. Friedland, ”On the Modeling and Simulation of Friction,” Amer. Contr. Conf., San Diego, CA, pp.1256-1261, 1990.
    [21]Tafazoli, S., de Silva, C. W. and Lawrence, P.D. , ” Tracking control of an electrohydraulic manipulator in the presence of friction,” Control Systems Technology, IEEE Transactions on , Volume: 6 Issue: 3 , pp.401-411, May 1998.
    [22]黃建銘, "長行程氣壓無桿缸同步運動控制之研究", 國立成功大學機械所論文, 2001.
    [23]K. Nevals, ” Compensation for the effect of cylinder friction in the pressure feedback control of the nip load on a paper center winder”, Proceedings of the IEEE International Conference on Industrial Technology, pp. 159-163, 1994.
    [24]Bonchis, A., Corke, P.I.and Rye, D.C., ” A pressure-based, velocity independent, friction model for asymmetric hydraulic cylinders”, Proceedings. Of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 1746 –1751, May 1999.
    [25]Meikandan, N., Raman, R. and Singaperumal M., ” Experimental study of friction in hydraulic actuators with sealless pistons” Wear, v 176, n 1, pp. 131-135, Jul 1994.
    [26]賴文六, ”伺服油壓缸之低摩擦化設計”, 機械月刊, 第二十六卷第四期, pp.396-400, 2000.4.
    [27]李丞欽, ”滑道用潤滑油於低壓低速下之摩擦特性研究”, 國立台灣大學機械所論文,1999.
    [28]F. P. Bowden and D. Tabor, ”Friction and Lubrication of Solids”, Industrial Lubrication and Tribology, v 49, n 1, p 39, Jan-Feb, 1997.
    [29]康淵、姜智彬、陳保昌、李興漢, ”機床滑軌”, 機械月刊, 第二十八卷 第三期, pp.6-17, 2002.3.
    [30]李冠宗, ”潤滑學”, 高力圖書有限公司.
    [31]近森德著, 賴耿陽譯, ”密封迫緊技術”, 復漢出版社.
    [32]屈岳陵, 卓永財, ”線性滑軌的原理簡介與發展”, 機械月刊, 第二十七卷 第三期, pp.446-17, 2001.3.
    [33]戴豐成, 李世欽, ”線性傳動元件-線性滑軌的介紹”, 機械工業雜誌, pp.203-209. 2001.3.
    [34]K. Tanaka, ”Effect of Various Fillers on the Friction and Wear of Polytertrafluoroethylene-Based Composites”, Friction and Wear of Polymer Composites, v 79, pp. 221-234, Jul 1982.
    [35]E. Jisheng and D. T. Gaene, ”Tribological Performance of Bronze-Fi;;ed PTFR Facings for Machine Tool Slideways”, Wear, v 176, n 2, , pp. 195-205, Aug 1994.
    [36]賴文六, ”油壓缸之油封問題及其對策”, 機械月刊, 第二十七卷第九期, pp.410-424, 2001.9.
    [37]石原智男、市川常雄、金子敏夫、竹中俊夫編集, 賴耿陽譯著, ”實用油壓技術”, 復漢出版社.
    [38]楊永光, ”密封環在油壓系統之應用”, 機械工業, 1987.11.
    [39]T.C. Hsia, ”System Identification”, Lexington Books, 1977.
    [40]黃百毅, ”智慧型精密定位控制系統設計”, 國立台灣大學機械所論文,2000.
    [41]林冠禎, ”順滑模態控制器於高精度定位控制之應用”, 國立成功大學航太所論文,2001.
    [42]絲國一, ”線性步進、伺服馬達原理及其應用”, 機械月刊, 第二十七卷第二期, pp.253-262, 2001.9.
    [43]陳承賢, ”線性步進馬達結合壓電致動器之次微米定位控制”, 國立中興大學機械所論文,1999.

    下載圖示 校內:2004-07-18公開
    校外:2004-07-18公開
    QR CODE