| 研究生: |
廖柏霖 Liao, Po-Lin |
|---|---|
| 論文名稱: |
流體化床均質結晶技術應用於含硫廢水回收金屬硫化物 Recovery of Metal Sulfides from Sulfide-Containing Wastewater using Fluidized Bed Homogeneous Crystallization Technology |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 流體化床均質結晶 、硫化鋅 、硫化鎳 、過飽和度 、結晶率 |
| 外文關鍵詞: | Fluidized-bed homogeneous crystallization, zinc sulfide, nickel sulfide, cross-sectional surface loading, crystallization ratio |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類文明的高速發展依賴能源大量地使用,伴隨溫室氣體進入大氣導致極端氣候議題是當今社會所面臨嚴峻挑戰。天然氣做為目前所認知相對乾淨的化石燃料而逐漸做為電力產業發電來源,但其蘊含具有強腐蝕性及高毒性的硫化氫將會導致金屬管線及設備的嚴重腐蝕及人體及環境的嚴重危害。因此需要在硫化氫的精煉過程進行脫硫的程序,將硫化氫從天然氣中分離至水溶液當中,避免機具腐蝕及相關環境問題。目前除硫技術有生物滴濾法、化學氧化法、微曝氣、吸附法及鹼金屬硫化物沉澱法,但是評估能量消耗及二次副產物等相缺點,因此需要發展一項新的技術來處理硫化物。流體化床均質結晶技術是新世代的水處理技術,不僅能夠將水質進行淨化,更能夠以均質結晶形式回收溶液中的有用物質,同時達到水處理及資源回收之目的。流體化床均質結晶技術不須額外導入氧氣及加溫,相對於生物滴濾法、化學氧化法、微曝氣、吸附法更加節省能源;相對於傳統金屬硫化物沉澱法,不僅保留快速相分離的優勢,更是解決傳統化學混凝沉澱法產生含水率高污泥的二次副產物的缺點;相對於金屬硫化物的流體化床均質結晶技術不僅能夠將硫酸包含鹼金屬硫化物沉澱法的快速相分離的優勢,更是解決傳統化學混凝沉澱法生成高含水量污泥的缺點,以回收低含水量的毫米級結晶顆粒來廢水中的硫化物。
本研究流程為沉澱劑選擇、氫硫酸溶液的混凝沉澱研究、氫硫酸溶液於流體化床均質結晶參數變因及最終的固體回收物分析。沉澱劑對於氫硫酸水溶液具有不同的處理效率。結果顯示鋅做為沉澱劑對於氫硫酸水溶液具有最佳的處理效果,其他沉澱劑硫效率依序為鎳>鐵>鈣>鋁。因此第一部分為鋅做為沉澱劑具有氫硫酸反應性佳、其硫化鋅穩定性高及較低環境影響特性適合做為沉澱劑使用;第二部分為鎳做為沉澱劑具有氫硫酸反應性佳、氫硫酸的專一性及硫化鎳穩定性高特性適合做為沉澱劑使用。
第一部份利用鋅做為混凝劑對氫硫酸溶液的混凝沉澱及硫化鋅回收。初始氫硫酸濃度為1000 mg/L(31.25 mM),探討在pH 3.0-11.0條件、鋅硫比([Zn]0 /[S]0) = 0.5-2.0及共存離子的研究。研究結果顯示在pH 7.0條件、[Zn]0 /[S]0 = 1.0的條件能夠將硫濃度降至2.7 mg/L,達到99.8%硫去除率,但是有機物的共存離子(檸檬酸及EDTA)會與鋅反應導致去除率下降並且會產生許多細小的懸浮顆粒。流體化床均質結晶技術在pH為5.4、[Zn]0 /[S]0 = 1.0及截面負荷為2.2 kg/m2h的條件下,硫化物的總去除率、硫化物結晶率及總硫剩餘濃度分別為98.8、97.8%及10.7 mg/L,並且Log Sinlet ≤ 2.1能使得均質結晶系統能有效進行,並且回收的固體副產物為硫化鋅均質顆粒。
第二部分則是利用鎳做為混凝劑對氫硫酸溶液的混凝沉澱及硫化鎳回收。初始氫硫酸濃度為1000 mg/L(31.25 mM),探討在pH 7.0-11.0條件、鎳硫比([Ni]0/ [S]0 )= 0.6-1.4及共存離子的研究。研究結果顯示在pH 10.0、[Ni]0/ [S]0 = 1.0的條件能夠將硫濃度降至0.2 mg/L ,達到99.98%硫去除率,但是有機物的共存離子(檸檬酸及EDTA)亦會與鎳先行反應降低混凝反應的效率。在pH 9.8 ± 0.3、[Ni]0/ [S]0 = 0.8、LS = 0.21 kg/m2h、水力停留時間為15分鐘、床高為25公分及回流比為15.2的條件之下,總硫去除效率、硫結晶率及總鎳溶解性濃度分別為的97.3%、96.7%及1.5 mg/L,透過並且回收的固體副產物為硫化鎳混合物(NiS/Ni3S4)。流體化床均質結晶技術對硫化鎳系統得到最小表面負荷量(minimum surface loading)、臨界表面負載量(critical surface loading) 及最大表面負載量(maximum surface loading) 分別為0.11、96.2及 128.5 ×10-6 M/m2h。
FBHC相較於化學沉澱法能夠減少86.0%的處理成本,並且以電力計算二氧化碳排放減量能夠減少87.6%的二氧化碳排放量。同時利用水力條件區分系統為未飽和區、介穩區、異相成核及均相成核區。
This study aims to achieve three objectives: (i) recovering sulfide as nickel sulfide zinc sulfide granulated pellets from a solution using FBHC, (ii) optimizing the values of the operating parameters of the FBHC system, including effluent pH, precipitant dosage, and sulfur cross-sectional loading, to achieve optimal operating conditions. For zinc part, pH 5.4, [Zn]0/ [S]0 = 1.0, and a cross-sectional load of 2.2 kg/m2h in the FBHC system, the total removal rate, crystallization ratio, and total residual concentration of sulfide are 98.8%, 97.8%, and 10.7 mg/L, respectively.; For nickel part, the conditions of pH 9.8 ± 0.3, [Ni]0/[S]0 = 0.8, a cross-sectional load (LS) of 0.21 kg/m2h, hydraulic retention time of 15 minutes, bed height of 25 cm, and a reflux ratio of 15.2. The results indicated a removal rate of 97.3%, a crystallization ratio of 96.7%, and a total residual sulfide concentration of 1.5 mg/L. Additionally, (iii) the FBHC technology was employed to interpret the system state using surface loading, demonstrating an 86% reduction in waste treatment costs compared to chemical precipitation.
Abbott, T., & Eskicioglu, C. (2015). Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge. Waste Management, 46, 449-458.
Agarwal, V., & Peters, B. (2014). Solute precipitate nucleation: A review of theory and simulation advances. Advances in Chemical Physics: Volume 155, 97-160.
Aghazadeh, M., Golikand, A. N., & Ghaemi, M. (2011). Synthesis, characterization, and electrochemical properties of ultrafine β-Ni (OH)2 nanoparticles. International Journal of Hydrogen Energy, 36(14), 8674-8679.
Agrawal, S., & Paterson, A. (2015). Secondary nucleation: mechanisms and models. Chemical Engineering Communications, 202(5), 698-706.
Ahmadi, M., Ramavandi, B., & Sahebi, S. (2015). Efficient degradation of a biorecalcitrant pollutant from wastewater using a fluidized catalyst-bed reactor. Chemical Engineering Communications, 202(8), 1118-1129.
Aita, B. C., Mayer, F. D., Muratt, D. T., Brondani, M., Pujol, S. B., Denardi, L. B., . . . Da Silveira, D. D. (2016). Biofiltration of H2S-rich biogas using Acidithiobacillus thiooxidans. Clean Technologies and Environmental Policy, 18(3), 689-703.
Al-Tarazi, M., Heesink, A. B. M., & Versteeg, G. F. (2004). Precipitation of metal sulphides using gaseous hydrogen sulphide: mathematical modelling. Chemical Ngineering Science, 59(3), 567-579.
Aldaco, R., Garea, A., & Irabien, A. (2006). Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand. Industrial & Engineering Chemistry Research, 45(2), 796-802.
Aldaco, R., Garea, A., & Irabien, A. (2007a). Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor. Water Research, 41(4), 810-818.
Aldaco, R., Garea, A., & Irabien, A. (2007b). Particle growth kinetics of calcium fluoride in a fluidized bed reactor. Chemical Engineering Science, 62(11), 2958-2966.
Allegue, L. B., Hinge, J., & Allé, K. (2012). Biogas and bio-syngas upgrading. Danish Technological Institute, 5-97.
Anantharaj, S., Sugime, H., & Noda, S. (2021). Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 408, 127275.
Augustijns, P., & Brewster, M. E. (2007). Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics (Vol. 190): Springer.
Avena, M. J., & De Pauli, C. P. (1996). H+-promoted dissolution of Ni(OH)2: a turbidimetric study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 108(2-3), 181-189.
Baeyens, J., & Geldart, D. (1973). Predictive Calculations of Flow Parameters in Gas Fluidized Beds and Fluidization Behaviour of Various Powders. Paper presented at the Proc. Conf. La Fluidisation et ses Applications, Toulouse.
Bajpai, P. (2012). Chapter Seven–Peroxyacids bleaching. Environ. Benign Approaches Pulp Bleach, Gulf Professional Publishing, 167-188.
Barbusiński, K., & Kalemba, K. (2016). Use of biological methods for removal of H2S from biogas in wastewater treatment plants–a review. Architecture, Civil Engineering, Environment, 9(1), 103-112.
Barik, R., & Ingole, P. P. (2020). Challenges and prospects of metal sulfide materials for supercapacitors. Current Opinion in Electrochemistry, 21, 327-334.
Barzegaravval, H., Hosseini, S. E., Wahid, M. A., & Saat, A. (2018). Effects of fuel composition on the economic performance of biogas-based power generation systems. Applied Thermal Engineering, 128, 1543-1554.
Battistoni, P., Pavan, P., Prisciandaro, M., & Cecchi, F. (2000). Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Water Research, 34(11), 3033-3041.
Bebie, J., Schoonen, M. A., Fuhrmann, M., & Strongin, D. R. (1998). Surface charge development on transition metal sulfides: an electrokinetic study. Geochimica et Cosmochimica Acta, 62(4), 633-642.
Bello, M. M., Raman, A. A. A., & Purushothaman, M. (2017). Applications of fluidized bed reactors in wastewater treatment–a review of the major design and operational parameters. Journal of Cleaner Production, 141, 1492-1514.
Bisheh, M. G., Ghorbani, M., Peyravi, M., & Jahanshahi, M. (2020). Static and dynamic filtration of nickel and lead ions by adsorptive membrane induced by POP via layer by layer technique. Chemical Engineering Research and Design, 153, 829-838.
Borchert, C., & Sundmacher, K. (2012). Efficient formulation of crystal shape evolution equations. Chemical Engineering Science, 84, 85-99.
Borthakur, P., & Das, M. R. (2018). Hydrothermal assisted decoration of NiS2 and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: Effect of background electrolyte and surface charge. Journal of Colloid and Interface Science, 516, 342-354.
Bouayad, A. (2020). Wild rice protectors: An Ojibwe odyssey. Environmental Law Review, 22(1), 25-42.
Brunsteiner, M., Jones, A. G., Pratola, F., Price, S. L., & Simons, S. J. (2005). Toward a molecular understanding of crystal agglomeration. Crystal Growth & Design, 5(1), 3-16.
Buckton, G. (2007). Solid-state properties, Aulton's pharmaceutics, The science of dosage form design, Aulton ME. In: London: Churchill Livingstone.
Buisman, C., Uspeert, P., Janssen, A., & Lettinga, G. (1990). Kinetics of chemical and biological sulphide oxidation in aqueous solutions. Water Research, 24(5), 667-671.
Cai, J., Zheng, P., Qaisar, M., & Zhang, J. (2017). Elemental sulfur recovery of biological sulfide removal process from wastewater: a review. Critical Reviews in Environmental Science and Technology, 47(21), 2079-2099.
Cao, H., Amador, C., Jia, X., Li, Y., & Ding, Y. (2016). A modelling framework for bulk particles dissolving in turbulent regime. Chemical Engineering Research and Design, 114, 108-118.
Chandrasekaran, S., Yao, L., Deng, L., Bowen, C., Zhang, Y., Chen, S., . . . Zhang, P. (2019). Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 48(15), 4178-4280.
Chen, K., & Xue, D. (2012). pH-assisted crystallization of Cu 2 O: Chemical reactions control the evolution from nanowires to polyhedra. CrystEngComm, 14(23), 8068-8075.
Chen, L., Ding, D., Liu, C., Cai, H., Qu, Y., Yang, S., . . . Cai, T. (2018). Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: a comparative study and mechanistic consideration. Chemical Engineering Journal, 334, 273-284.
Cheng, J., Yang, H., Fan, C., Li, R., Yu, X., & Li, H. (2020). Review on the applications and development of fluidized bed electrodes. Journal of Solid State Electrochemistry, 24, 2199-2217.
Chung, J., Jeong, E., Choi, J. W., Yun, S. T., Maeng, S. K., & Hong, S. W. (2015). Factors affecting crystallization of copper sulfide in fed-batch fluidized bed reactor. Hydrometallurgy, 152, 107-112.
Cooper, W. A. (1974). A possible mechanism for contact nucleation. Journal of Atmospheric Sciences, 31(7), 1832-1837.
Denk, E. G., & Botsaris, G. D. (1972). Mechanism of contact nucleation. Journal of Crystal Growth, 15(1), 57-60.
Dirksen, J. A., & Ring, T. (1991). Fundamentals of crystallization: kinetic effects on particle size distributions and morphology. Chemical Engineering Science, 46(10), 2389-2427.
Dohnalek, D. A., & FitzPatrick, J. A. (1983). The chemistry of reduced sulfur species and their removal from groundwater supplies. Journal‐American Water Works Association, 75(6), 298-308.
Dokoumetzidis, A., & Macheras, P. (2006). A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. International Journal of Pharmaceutics, 321(1-2), 1-11.
Dold, B. (2010). Basic concepts in environmental geochemistry of sulfidic mine-waste management. Waste management, 24, 173-198.
Edition, F. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-108.
Edreder, E., Mujtaba, I., & Emtir, M. (2011). Optimal operation of different types of batch reactive distillation columns used for hydrolysis of methyl lactate to lactic acid. Chemical Engineering Journal, 172(1), 467-475.
El-Yafi, A. K. E.-Z., & El-Zein, H. (2015). Technical crystallization for application in pharmaceutical material engineering. Asian Journal of Pharmaceutical Sciences, 10(4), 283-291.
Erdemir, D., Lee, A. Y., & Myerson, A. S. (2009). Nucleation of crystals from solution: classical and two-step models. Accounts of Chemical Research, 42(5), 621-629.
Ergun, S. (1952). Fluid flow through packed columns. Chemical engineering progress, 48(2), 89.
Evangelou, V. B. (2018). Pyrite oxidation and its control: solution chemistry, surface chemistry, acid mine drainage (AMD), Molecular Oxidation Mechanisms, Microbial role, Kinetics, Control, Ameliorates and Limitations, Microencapsulation: CRC press.
Fairthorne, G., Fornasiero, D., & Ralston, J. (1997). Interaction of thionocarbamate and thiourea collectors with sulphide minerals: a flotation and adsorption study. International Journal of Mineral Processing, 50(4), 227-242.
Fan, G., Cang, L., Fang, G., Qin, W., Ge, L., & Zhou, D. (2014). Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot. Chemosphere, 117, 410-418.
Fazli, Y., Pourmortazavi, S. M., Kohsari, I., Karimi, M. S., & Tajdari, M. (2016). Synthesis, characterization and photocatalytic property of nickel sulfide nanoparticles. Journal of Materials Science: Materials in Electronics, 27(7), 7192-7199.
Fazli, Y., Pourmortazavi, S. M., Kohsari, I., & Sadeghpur, M. (2014). Electrochemical synthesis and structure characterization of nickel sulfide nanoparticles. Materials Science in Semiconductor Processing, 27, 362-367.
Feng, Y., Liu, J., Wu, D., Zhou, Z., Deng, Y., Zhang, T., & Shih, K. (2015). Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation. Chemical Engineering Journal, 280, 514-524.
Firer, D., Friedler, E., & Lahav, O. (2008). Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Science of the Total Environment, 392(1), 145-156.
Florent, M., & Bandosz, T. J. (2015). Effects of surface heterogeneity of cobalt oxyhydroxide/graphite oxide composites on reactive adsorption of hydrogen sulfide. Microporous and Mesoporous Materials, 204, 8-14.
Fu, Q. T., Liu, E. J., Wilson, P., & Chen, Z. (2015). Ice nucleation behaviour on sol–gel coatings with different surface energy and roughness. Physical Chemistry Chemical Physics, 17(33), 21492-21500.
Fullston, D., Fornasiero, D., & Ralston, J. (1999). Zeta potential study of the oxidation of copper sulfide minerals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 113-121.
Galhardi, J. A., & Bonotto, D. M. (2016). Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environmental Science and Pollution Research, 23(18), 18911-18927.
Gaur, R., Shahabuddin, S., Mukherjee, N., & Chandra, P. (2022). Recent advances in nanostructured transition metal sulfide based sensors for environmental applications. Materials Today: Proceedings.
George, A., & Wilson, W. W. (1994). Predicting protein crystallization from a dilute solution property. Acta Crystallographica Section D: Biological Crystallography, 50(4), 361-365.
Giannakis, S., Lin, K.-Y. A., & Ghanbari, F. (2021). A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chemical Engineering Journal, 406, 127083.
Gibbs, J. W. (1876). On the equilibrium of heterogeneous substances. Transactions of Connecticut Academy of Arts and Sciences, 108-248.
Goharshadi, E. K., Sajjadi, S. H., Mehrkhah, R., & Nancarrow, P. (2012). Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots. Chemical Engineering Journal, 209, 113-117. doi:https://doi.org/10.1016/j.cej.2012.07.131
Gopi, C. V., Venkata-Haritha, M., Lee, Y.-S., & Kim, H.-J. (2016). ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 4(21), 8161-8171.
Guan, Q., Zeng, G., Song, J., Li, Y., Yang, L., Wang, Z., & Liu, C. (2021). Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system. Journal of Environmental Chemical Engineering, 9(4), 105623.
Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., & Chen, L.-W. (2011). Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environmental Science & Technology, 45(21), 9308-9314.
Gui, L., Yang, H., Huang, H., Hu, C., Feng, Y., & Wang, X. (2022). Liquid solid fluidized bed crystallization granulation technology: Development, applications, properties, and prospects. Journal of Water Process Engineering, 45, 102513.
Gund, G. S., Dubal, D. P., Jambure, S. B., Shinde, S. S., & Lokhande, C. D. (2013). Temperature influence on morphological progress of Ni (OH) 2 thin films and its subsequent effect on electrochemical supercapacitive properties. Journal of Materials Chemistry A, 1(15), 4793-4803.
Guo, X. Y., Liang, S., & Tian, Q. H. (2011). Removal of heavy metal ions from aqueous solutions by adsorption using modified orange peel as adsorbent. Paper presented at the Advanced Materials Research.
Ha, T.-H., Mahasti, N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023). Enhanced struvite (MgNH4PO4· 6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855.
Ha, T.-H., Mahasti, N. N., Lu, M.-C., & Huang, Y.-H. (2022). Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Separation and Purification Technology, 303, 122192.
Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1999). Improving thermophilic anaerobic digestion of swine manure. Water Research, 33(8), 1805-1810.
Hendriksen, B. A., Grant, D. J., Meenan, P., & Green, D. A. (1998). Crystallisation of paracetamol (acetaminophen) in the presence of structurally related substances. Journal of Crystal Growth, 183(4), 629-640.
Herney-Ramirez, J., Vicente, M. A., & Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Applied Catalysis B: Environmental, 98(1-2), 10-26.
Herron, S. M., Lawal, Q. O., & Bent, S. F. (2015). Polysulfide ligand exchange on zinc sulfide nanocrystal surfaces for improved film formation. Applied Surface Science, 359, 106-113.
Hickey, A. J., Crowder, T. M., Louey, M. D., & Orr, N. (2003). A guide to pharmaceutical particulate science: CRC press.
Hollander, E. D. (2002). Shear induced agglomeration and mixing.
Hondo, H. (2005). Life cycle GHG emission analysis of power generation systems: Japanese case. Energy, 30(11-12), 2042-2056.
Hornsby, D., & Leja, J. (1982). Selective flotation and its surface chemical characteristics. In Surface and Colloid Science (pp. 217-313): Springer.
Howard, J. (1989). Fluidized bed technology.
Huisman, J. L., Schouten, G., & Schultz, C. (2006). Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy, 83(1-4), 106-113.
Hutňan, M., Chávez-Fuentes, J. J., & Czölderová, M. (2016). Using of Ferrous Chloride in Anaerobic Digestion of a Substrate With High Sulphur Content. Paper presented at the Applied Mechanics and Materials.
Inglezakis, V. J., Stylianou, M., & Loizidou, M. (2010). Hydrodynamic studies on zeolite fluidized beds. International Journal of Chemical Reactor Engineering, 8(1).
Iranmanesh, P., Saeednia, S., & Nourzpoor, M. (2015). Characterization of ZnS nanoparticles synthesized by co-precipitation method. Chinese Physics B, 24(4), 046104. doi:10.1088/1674-1056/24/4/046104
Islam, B., Musa, A., Ibrahim, E., Sharafa, S. A., & Elfaki, B. M. (2014). Evaluation and characterization of tannery wastewater. Journal of Forest Products & Industries, 3(3), 141-150.
Jürgensen, L., Ehimen, E. A., Born, J., & Holm-Nielsen, J. B. (2018). A combination anaerobic digestion scheme for biogas production from dairy effluent—CSTR and ABR, and biogas upgrading. Biomass and Bioenergy, 111, 241-247.
Janssen, A., Sleyster, R., Van der Kaa, C., Jochemsen, A., Bontsema, J., & Lettinga, G. (1995). Biological sulphide oxidation in a fed‐batch reactor. Biotechnology and Bioengineering, 47(3), 327-333.
Jeong, Y., & Manthiram, A. (2001). Synthesis of nickel sulfides in aqueous solutions using sodium dithionite. Inorganic Chemistry, 40(1), 73-77.
Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1-2), 3-14.
Jung, H., Kim, D., Choi, H., & Lee, C. (2022). A review of technologies for in-situ sulfide control in anaerobic digestion. Renewable and Sustainable Energy Reviews, 157, 112068.
Karbanee, N., Van Hille, R. P., & Lewis, A. E. (2008). Controlled nickel sulfide precipitation using gaseous hydrogen sulfide. Industrial & Engineering Chemistry Research, 47(5), 1596-1602.
Khan, M., Hussain, M., Mansourpour, Z., Mostoufi, N., Ghasem, N., & Abdullah, E. (2014). CFD simulation of fluidized bed reactors for polyolefin production–A review. Journal of Industrial and Engineering Chemistry, 20(6), 3919-3946.
Kim, S. D., & Kang, Y. (1997). Heat and mass transfer in three-phase fluidized-bed reactors—an overview. Chemical Engineering Science, 52(21-22), 3639-3660.
Kleinjan, W. E., de Keizer, A., & Janssen, A. J. (2005). Kinetics of the chemical oxidation of polysulfide anions in aqueous solution. Water Research, 39(17), 4093-4100.
Klok, J. B., de Graaff, M., van den Bosch, P. L., Boelee, N. C., Keesman, K. J., & Janssen, A. J. (2013). A physiologically based kinetic model for bacterial sulfide oxidation. Water Research, 47(2), 483-492.
Kohantorabi, M., Moussavi, G., & Giannakis, S. (2021). A review of the innovations in metal-and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chemical Engineering Journal, 411, 127957.
Krayzelova, L., Bartacek, J., Díaz, I., Jeison, D., Volcke, E. I., & Jenicek, P. (2015). Microaeration for hydrogen sulfide removal during anaerobic treatment: a review. Reviews in Environmental Science and Bio/Technology, 14(4), 703-725.
Kuklińska, K., Wolska, L., Namieśnik, J., & Cieszynska, M. (2013). Analytical and bioanalytical problems associated with the toxicity of elemental sulfur in the environment. TrAC Trends in Analytical Chemistry, 48, 14-21.
Kulkarni, S., & Kaware, J. (2014). Regeneration and recovery in adsorption-a review. International Journal of Innovative Science, Engineering & Technology, 1(8), 61-64.
Lahiq, A. A., & Alshahrani, S. M. (2023). State-of-the-art review on various mathematical approaches towards solving population balanced equations in pharmaceutical crystallization process. Arabian Journal of Chemistry, 104929.
Langer, D., & Vesely, C. (1970). Electronic core levels of zinc chalcogenides. Physical Review B, 2(12), 4885.
Lashkaryani, E. B., Kakavandi, B., Kalantary, R. R., Jafari, A. J., & Gholami, M. (2019). Activation of peroxymonosulfate into amoxicillin degradation using cobalt ferrite nanoparticles anchored on graphene (CoFe2O4@ Gr). Toxin Reviews.
Lewis, A., Seckler, M., Kramer, H., & Van Rosmalen, G. (2015). Industrial Crystallization: Fundamentals and Applications: Cambridge University Press.
Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104(2), 222-234.
Li, C., Bai, S., Ding, Z., Yu, P., & Wen, S. (2019). Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption. Journal of the Taiwan Institute of Chemical Engineers, 96, 53-62.
Li, Q., & Guo, Z. (2018). Fundamentals of icing and common strategies for designing biomimetic anti-icing surfaces. Journal of Materials Chemistry A, 6(28), 13549-13581.
Li, Y., Dong, H., Li, L., Tang, L., Tian, R., Li, R., . . . Xiao, J. (2021). Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Research, 192, 116850.
Li, Z., Li, D., Wang, L., Lu, C., Shan, P., Zou, X., & Li, Z. (2019). Photocontrollable water-soluble polymeric hydrogen sulfide (H2S) donor. Polymer, 168, 16-20.
Liang, H. (2014). Trends in mine water treatment. Mining Magazine, 66, 83-85.
Liao, P.-L., Mahasti, N. N. N., & Huang, Y.-H. (2022). The recovery of sulfur as ZnS particles from sulfide-contained wastewater using fluidized bed homogeneous crystallization technology. Chemical Engineering Journal, 430, 133170.
Lim, J. W., & Wang, J.-Y. (2013). Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Management, 33(4), 813-819.
Limtrakul, S. (1996). Hydrodynamics of Liquid Fluidized Beds and Gas-Liquid Fluidized Beds: Washington University in St. Louis.
Lin, J.-Y., Mahasti, N. N., & Huang, Y.-H. (2021). Fluidized-bed crystallization of barium perborate for continuous boron removal from concentrated solution: Supersaturation as a master variable. Separation and Purification Technology, 278, 119588.
Linsebigler, A. L., Lu, G., & Yates Jr, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735-758.
Liu, G., Li, C., Stewart, B. A., Liu, L., Zhang, M., Yang, M., & Lin, K. (2020). Enhanced thermal activation of peroxymonosulfate by activated carbon for efficient removal of perfluorooctanoic acid. Chemical Engineering Journal, 399, 125722.
Liu, T., Liu, Y., Yao, L., Yang, W., Tian, L., Liu, H., . . . Wang, C. (2018). Controllable formation of meso-and macropores within metal–organic framework crystals via a citric acid modulator. Nanoscale, 10(27), 13194-13201.
Liu, Y., Wang, H., Yuan, X., Wu, Y., Wang, H., Tan, Y. Z., & Chew, J. W. (2021). Roles of sulfur-edge sites, metal-edge sites, terrace sites, and defects in metal sulfides for photocatalysis. Chem Catalysis, 1(1), 44-68.
Lovette, M. A., Browning, A. R., Griffin, D. W., Sizemore, J. P., Snyder, R. C., & Doherty, M. F. (2008). Crystal shape engineering. Industrial & Engineering Chemistry Research, 47(24), 9812-9833.
Luther, G. W., & Rickard, D. T. (2005). Metal sulfide cluster complexes and their biogeochemical importance in the environment. Journal of Nanoparticle Research, 7(4), 389-407.
Magdalena, R., Valero, A., & Calvo, G. (2023). Limit of recovery: How future evolution of ore grades could influence energy consumption and prices for Nickel, Cobalt, and PGMs. Minerals Engineering, 200, 108150.
Mangin, D., Garcia, E., Gerard, S., Hoff, C., Klein, J., & Veesler, S. (2006). Modeling of the dissolution of a pharmaceutical compound. Journal of Crystal Growth, 286(1), 121-125.
Markoš, J. (2011). Mass Transfer in Chemical Engineering Processes: BoD–Books on Demand.
Mehmood, A., Rahman, G., Shah, A. u. H. A., Joo, O.-s., & Mian, S. A. (2021). Template-free hydrothermal growth of nickel sulfide nanorods as high-performance electroactive materials for oxygen evolution reaction and supercapacitors. Energy & Fuels, 35(8), 6868-6879.
Midha, V., Jha, M., & Dey, A. (2012). Sulfide oxidation in fluidized bed bioreactor using nylon support material. Journal of Environmental Sciences, 24(3), 512-519.
Mokone, T., Lewis, A., & Van Hille, R. (2012). Effect of post-precipitation conditions on surface properties of colloidal metal sulphide precipitates. Hydrometallurgy, 119, 55-66.
Mokone, T., Van Hille, R., & Lewis, A. (2012). Metal sulphides from wastewater: assessing the impact of supersaturation control strategies. Water research, 46(7), 2088-2100.
Morse, G., Brett, S., Guy, J., & Lester, J. (1998). Phosphorus removal and recovery technologies. Science of the total environment, 212(1), 69-81.
Moslemi, H., & Gharabaghi, M. (2017). A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry, 47, 1-18.
Mu, C., Pang, J., Lu, Q., & Liu, T. (2008). Effects of surface topography of material on nucleation site density of dropwise condensation. Chemical Engineering Science, 63(4), 874-880.
Mullin, J. W. (2001). Crystallization: Elsevier.
Murugananthan, M., Raju, G. B., & Prabhakar, S. (2004). Removal of sulfide, sulfate and sulfite ions by electro coagulation. Journal of Hazardous Materials, 109(1-3), 37-44.
Myerson, A. (2002). Handbook of Industrial Crystallization: Butterworth-Heinemann.
Nagy, Z., Aamir, E., & Rielly, C. (2011). Internal fines removal using population balance model based control of crystal size distribution under dissolution, growth and nucleation mechanisms. Crystal Growth & Design, 11(6), 2205-2219.
Namasivayam, C., & Sureshkumar, M. (2007). Removal of Sulfate from Water and Wastewater by Surfactant-modified Coir Pith, An Agricultural SolidWaste'by Adsorption Methodology. Journal of Environmental Engineering and Management, 17(2), 129.
Nanev, C. N. (2018a). Peculiarities of protein crystal nucleation and growth. Crystals, 8(11), 422.
Nanev, C. N. (2018b). Recent insights into protein crystal nucleation. Crystals, 8(5), 219.
Nanev, C. N. (2020). Advancements (and challenges) in the study of protein crystal nucleation and growth; thermodynamic and kinetic explanations and comparison with small-molecule crystallization. Progress in Crystal Growth and Characterization of Materials, 66(2), 100484.
Nanev, C. N. (2022). On the vitality of the classical theory of crystal nucleation; crystal nucleation in pure own melt; atmospheric ice and snow; ice in frozen foods. Progress in Crystal Growth and Characterization of Materials, 68(2), 100567.
Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A., Pathak, N., Commault, A. S., . . . Nghiem, L. D. (2021). Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of the Total Environment, 765, 142753.
Nhut, H. H., & Le, L. T. (2020). Removal of H2S in biogas using biotrickling filter: Recent development. Process Safety and Environmental Protection, 144, 297-309.
Nicolis, G., & Nicolis, C. (2003). Enhancement of the nucleation of protein crystals by the presence of an intermediate phase: a kinetic model. Physica A: Statistical Mechanics and its Applications, 323, 139-154.
Nielsen, A. E. (1984). Electrolyte crystal growth mechanisms. Journal of Crystal Growth, 67(2), 289-310.
Nielsen, A. E., & Toft, J. M. (1984). Electrolyte crystal growth kinetics. Journal of Crystal Growth, 67(2), 278-288.
Niemi, J. (2010). Henkilökohtaisten vedenpuhdistusmenetelmien testaaminen.
Noyes, A. A., & Whitney, W. R. (1897). The rate of solution of solid substances in their own solutions. Journal of the American Chemical Society, 19(12), 930-934.
Parveen, F., Berruti, F., Briens, C., & McMillan, J. (2013). Effect of fluidized bed particle properties and agglomerate shape on the stability of agglomerates in a fluidized bed. Powder Technology, 237, 46-52.
Patel, A., Enman, J., Gulkova, A., Guntoro, P. I., Dutkiewicz, A., Ghorbani, Y., . . . Matsakas, L. (2021). Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. Chemosphere, 263, 128306.
Pratiwi, J., Lin, J.-Y., Mahasti, N. N., Shih, Y.-J., & Huang, Y.-H. (2021). Fluidized-bed synthesis of iron-copper bimetallic catalyst (FeIIICuI@ SiO2) for mineralization of benzoic acid in blue light-assisted Fenton process. Journal of the Taiwan Institute of Chemical Engineers, 119, 60-69.
Rahaman, M. S., Mavinic, D. S., Meikleham, A., & Ellis, N. (2014). Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor. Water Research, 51, 1-10.
Rebosura Jr, M., Salehin, S., Pikaar, I., Keller, J., Sharma, K., & Yuan, Z. (2021). The impact of primary sedimentation on the use of iron-rich drinking water sludge on the urban wastewater system. Journal of Hazardous Materials, 402, 124051.
Reis, F. D., Silva, A. M., Cunha, E. C., & Leão, V. A. (2013). Application of sodium-and biogenic sulfide to the precipitation of nickel in a continuous reactor. Separation and Purification Technology, 120, 346-353.
Rema Devi, B. S., Raveendran, R., & Vaidyan, A. V. (2007). Synthesis and characterization of Mn2+-doped ZnS nanoparticles. Pramana, 68(4), 679-687. doi:10.1007/s12043-007-0068-7
Ren, W., Zhou, Z., Zhu, Y., Jiang, L.-M., Wei, H., Niu, T., . . . Qiu, Z. (2015). Effect of sulfate radical oxidation on disintegration of waste activated sludge. International Biodeterioration & Biodegradation, 104, 384-390.
Rodríguez-Chueca, J., Giannakis, S., Marjanovic, M., Kohantorabi, M., Gholami, M. R., Grandjean, D., . . . Pulgarín, C. (2019). Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5-vs. S2O82-in drinking water. Applied Catalysis B: Environmental, 248, 62-72.
Şahin, Ö., Özdemir, M., Kendirci, H., & Bulutcu, A. N. (2000). Determination of growth and dissolution mass rate of boric acid crystals by a simple computer program. Journal of Crystal Growth, 219(1-2), 75-82.
Sampaio, R., Timmers, R., Kocks, N., André, V., Duarte, M., van Hullebusch, E. D., . . . Lens, P. (2010). Zn–Ni sulfide selective precipitation: the role of supersaturation. Separation and Purification Technology, 74(1), 108-118.
Sampaio, R., Timmers, R., Xu, Y., Keesman, K., & Lens, P. (2009). Selective precipitation of Cu from Zn in a pS controlled continuously stirred tank reactor. Journal of Hazardous Materials, 165(1-3), 256-265.
Santos, C. E., Fonseca, A., Kumar, E., Bhatnagar, A., Vilar, V. J., Botelho, C. M., & Boaventura, R. A. (2015). Performance evaluation of the main units of a refinery wastewater treatment plant–A case study. Journal of Environmental Chemical Engineering, 3(3), 2095-2103.
Selvaraj, H., Aravind, P., George, H. S., & Sundaram, M. (2020). Removal of sulfide and recycling of recovered product from tannery lime wastewater using photoassisted-electrochemical oxidation process. Journal of Industrial and Engineering Chemistry, 83, 164-172.
Shaidan, N. H., Eldemerdash, U., & Awad, S. (2012). Removal of Ni (II) ions from aqueous solutions using fixed-bed ion exchange column technique. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 40-45.
Shivasankaran, N., Balan, A., Sankar, S., Magibalan, S., & Dinesh, C. (2020). Removal of hydrogen sulphide and odour from tannery & textile effluents. Materials Today: Proceedings, 21, 777-781.
Silva, A. M., Lima, R. M., & Leão, V. A. (2012). Mine water treatment with limestone for sulfate removal. Journal of Hazardous Materials, 221, 45-55.
Singh, A. K., & Chandra, R. (2019). Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. Aquatic Toxicology, 211, 202-216.
Sokolov, S. V., Tschulik, K., Batchelor-McAuley, C., Jurkschat, K., & Compton, R. G. (2015). Reversible or not? Distinguishing agglomeration and aggregation at the nanoscale. Analytical Chemistry, 87(19), 10033-10039.
Song, Y., Sun, D., Jiang, X., Ma, H., Ma, C., Hao, J., & Zhang, X. (2021). Enhanced activation of peroxymonosulfate by bimetallic spinel sulfides CoNi2S4 for organic dye degradation. Journal of Environmental Chemical Engineering, 9(6), 106889.
Spyridonidis, A., Vasiliadou, I. A., Akratos, C. S., & Stamatelatou, Κ. (2020). Performance of a full-scale biogas plant operation in greece and its impact on the circular economy. Water, 12(11), 3074.
Stratful, I., Scrimshaw, M., & Lester, J. (2001). Conditions influencing the precipitation of magnesium ammonium phosphate. Water research, 35(17), 4191-4199.
Strohmeier, B. R., & Hercules, D. M. (1984). Surface spectroscopic characterization of the interaction between zinc ions and γ-alumina. Journal of Catalysis, 86(2), 266-279.
Stumm, W., & Morgan, J. J. (2012). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Vol. 126): John Wiley & Sons.
Sugihara, H., & Taylor, L. S. (2018). Evaluation of pazopanib phase behavior following pH-induced supersaturation. Molecular Pharmaceutics, 15(4), 1690-1699.
Sugihartono, V. E., Mahasti, N. N., Shih, Y.-J., & Huang, Y.-H. (2022). Photo-persulfate oxidation and mineralization of benzoic acid: Kinetics and optimization under UVC irradiation. Chemosphere, 133663.
Sulonen, M. L., Baeza, J. A., Gabriel, D., & Guisasola, A. (2021). Optimisation of the operational parameters for a comprehensive bioelectrochemical treatment of acid mine drainage. Journal of Hazardous Materials, 409, 124944.
Sung, S.-S., Lee, D.-J., & Wu, R.-M. (2005). Steady-state solid-flux plot of blanket in upflow suspended bed. Journal of the Chinese Institute of Chemical Engineers, 36(4), 385-390.
Taiwam, E. P. A. o. Effluent Standards. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040004
Taqieddin, A., Allshouse, M. R., & Alshawabkeh, A. N. (2018). Critical Review—Mathematical formulations of electrochemically gas-evolving systems. Journal of the Electrochemical Society, 165(13), E694.
Thakral, N. K., Meister, E., Jankovsky, C., Li, L., Schwabe, R., Luo, L., & Chen, S. (2021). Prediction of in vivo supersaturation and precipitation of poorly water-soluble drugs: Achievements and aspirations. International Journal of Pharmaceutics, 600, 120505.
Thanh, B. T. (2020). Determination on Fluidization Velocity Types of the Continuous Refined Salt Fluidized Bed Drying. In Current Drying Processes: IntechOpen.
Tian, R., Dong, H., Chen, J., Li, R., & Xie, Q. (2020). Amorphous Co3O4 nanoparticles-decorated biochar as an efficient activator of peroxymonosulfate for the removal of sulfamethazine in aqueous solution. Separation and Purification Technology, 250, 117246.
Tilche, A., & Orhon, D. (2002). Appropriate basis of effluent standards for industrial wastewaters. Water Science and Technology, 45(12), 1-11.
Tisa, F., Raman, A. A. A., & Daud, W. M. A. W. (2014). Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review. Journal of Environmental Management, 146, 260-275.
Tomàs, M., Fortuny, M., Lao, C., Gabriel, D., Lafuente, J., & Gamisans, X. (2009). Technical and economical study of a full-scale biotrickling filter for H2S removal from biogas. Water Practice and Technology, 4(2).
Tomeczek, J., & Mocek, P. (2007). Attrition of coal ash particles in a fluidized‐bed reactor. AIChE journal, 53(5), 1159-1163.
Van den Broeck, K., Van Hoornick, N., Van Hoeymissen, J., de Boer, R., Giesen, A., & Wilms, D. (2003). Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor. IEEE Transactions on Semiconductor Manufacturing, 16(3), 423-428.
Van den Hove, A., Baeten, J. E., Decru, S. O., & Volcke, E. I. (2020). Potential of sulfide-based denitrification for municipal wastewater treatment. Journal of Water Process Engineering, 35, 101206.
Varanasi, K. K., Hsu, M., Bhate, N., Yang, W., & Deng, T. (2009). Spatial control in the heterogeneous nucleation of water. Applied Physics Letters, 95(9).
Veeken, A. H., Akoto, L., Pol, L. W. H., & Weijma, J. (2003). Control of the sulfide (S2−) concentration for optimal zinc removal by sulfide precipitation in a continuously stirred tank reactor. Water Research, 37(15), 3709-3717.
Vijayan, S., Umadevi, G., Mariappan, R., Narayanan, M., Narayanamoorthy, B., & Kandasamy, S. (2020). High luminescence efficiency of Copper doped Zinc Sulfide (Cu: ZnS) nanoparticles towards LED applications. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.11.214
Vikrant, K., Kim, K.-H., & Deep, A. (2019). Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation. Applied Catalysis B: Environmental, 259, 118025.
Vu, H. P., Nguyen, L. N., Wang, Q., Ngo, H. H., Liu, Q., Zhang, X., & Nghiem, L. D. (2021). Hydrogen sulphide management in anaerobic digestion: A critical review on input control, process regulation, and post-treatment. Bioresource Technology, 126634.
Wacławek, S., Lutze, H. V., Grübel, K., Padil, V. V., Černík, M., & Dionysiou, D. D. (2017). Chemistry of persulfates in water and wastewater treatment: a review. Chemical Engineering Journal, 330, 44-62.
Wang, L. K., Vaccari, D. A., Li, Y., & Shammas, N. K. (2005). Chemical precipitation. In Physicochemical Treatment Processes (pp. 141-197): Springer.
Wang, W., Lee, G.-J., Wang, P., Qiao, Z., Liu, N., & Wu, J. J. (2020). Microwave synthesis of metal-doped ZnS photocatalysts and applications on degrading 4-chlorophenol using heterogeneous photocatalytic ozonation process. Separation and Purification Technology, 237, 116469. doi:https://doi.org/10.1016/j.seppur.2019.116469
Wellinger, A., & Lindberg, A. (1999). Biogas upgrading and utilization. Paper presented at the IEA bioenergy task.
Widdel, F. (1988). Microbiology and ecology of sulfate-and sulfur-reducing bacteria. Biology of Anaerobic Microorganisms., 469-585.
Wilkin, R. T., & Rogers, D. A. (2010). Nickel sulfide formation at low temperature: initial precipitates, solubility and transformation products. Environmental Chemistry, 7(6), 514-523.
Wilson, C. (1995). Gelation in colloid–polymer mixtures. Faraday Discussions, 101, 65-76.
Wirsum, M., Fett, F., Iwanowa, N., & Lukjanow, G. (2001). Particle mixing in bubbling fluidized beds of binary particle systems. Powder Technology, 120(1-2), 63-69.
Wolde, P. R. t., & Frenkel, D. (1997). Enhancement of protein crystal nucleation by critical density fluctuations. Science, 277(5334), 1975-1978.
Wong, S. Y., Cui, Y., & Myerson, A. S. (2013). Contact secondary nucleation as a means of creating seeds for continuous tubular crystallizers. Crystal Growth & Design, 13(6), 2514-2521.
Wu, D., Ekama, G. A., Wang, H.-G., Wei, L., Lu, H., Chui, H.-K., . . . Chen, G.-H. (2014). Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. Water Research, 49, 251-264.
Xu, W., Lan, Z., Peng, B., Wen, R., & Ma, X. (2015). Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach. The Journal of Chemical Physics, 142(5).
Yao, J., Zeng, X., & Wang, Z. (2017). Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: kinetic study and products identification. Chemical Engineering Journal, 330, 345-354.
Yen, C.-H., Chen, K.-F., Kao, C.-M., Liang, S.-H., & Chen, T.-Y. (2011). Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants. Journal of Hazardous Materials, 186(2-3), 2097-2102.
Young, T. (1805). III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London(95), 65-87.
Yu, R., Lin, N., Yu, W., & Liu, X. Y. (2015). Crystal networks in supramolecular gels: formation kinetics and mesoscopic engineering principles. CrystEngComm, 17(42), 7986-8010.
Yu, S. H., & Yoshimura, M. (2002). Fabrication of Powders and Thin Films of Various Nickel Sulfides by Soft Solution‐Processing Routes. Advanced Functional Materials, 12(4), 277-285.
Zhao, K., Gao, F., & Yang, Q. (2022). Comprehensive Review on Metallurgical Upgradation Processes of Nickel Sulfide Ores. Journal of Sustainable Metallurgy, 8(1), 37-50.
Zheng, S.-F., Gross, U., & Wang, X.-D. (2021). Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces. Advances in Colloid and Interface Science, 295, 102503.
Zhou, P., Huang, J.-C., Li, A. W., & Wei, S. (1999). Heavy metal removal from wastewater in fluidized bed reactor. Water Research, 33(8), 1918-1924.
Zhou, Q., Jiang, X., Li, X., & Jiang, W. (2016). The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process. Applied Microbiology and Biotechnology, 100(18), 8179-8189.
张岚, 陈昌杰, & 陈亚妍. (2007). 我国生活饮用水卫生标准. 中国公共卫生, 23(11), 1281-1282.
經濟部能源局. (2020). 108_109年度全國電力資源供需報告.
校內:2028-12-06公開