簡易檢索 / 詳目顯示

研究生: 張勳承
Chang, Shing-Cheng
論文名稱: 應用分子動力學於合金團簇沈積製程之研究
An Investigation of the Alloy Cluster Beam Deposition via the Molecular Dynamics Simulations
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 185
中文關鍵詞: 團簇沈積分子動力學合金團簇磊晶速度分佈函數
外文關鍵詞: cluster beam deposition, molecular dynamics simulation, alloy cluster, epitaxy, velocity distribution function
相關次數: 點閱:106下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用分子動力學模擬方法來研究奈米合金團簇之動力學與結構特性,以及團簇沈積於單晶基板上之物理傳輸過程以及磊晶結構成長現象。研究首先分析團簇不同種類分子之速度分佈曲線差異,並指出團簇總體分子的速度分佈曲線可由各成份曲線的依合金比例合成。隨後研究分子的擴散能力,討論分子的擴散能力差異對團簇結構的影響,以及團簇表面偏析現象的觀察,並分析異種分子間的互相影響作用。對於團簇沈積過程的相關物理現象,則使用單金屬銅沈積模型來研究。模擬結果對於除了觀察撞擊階段的分子擴散、動量及能量傳遞現象外,也針對鬆弛過程的溫度衰退曲線以及磊晶成長現象作分析。對於團簇沈積薄膜的成長機制分析,則透過二維模型來研究,結果除了說明薄膜成長過程的空缺形成機制外,也指出薄膜表面可能存在具有混沌動態搖晃行為之奈米島狀或柱狀結構。
    由於分子特性有所差異,合金團簇沈積在基板上的擴散及磊晶現象均與單金屬團簇沈積不同。本文探討鈀鉑和鈀銀團簇在鈀基板上的沈積現象,並著重於團簇內溫度對製程之影響,因此團簇入射能量僅考慮微能量沈積。研究首先觀察團簇內溫度對於其動態與結構特性的影響,並比較兩種團簇的差異。分析結果指出鈀合金中添加鉑原子會降低鈀原子的擴散能力,而加入銀原子則相反,而原子活動力的差異也影響團簇沈積之磊晶結構成長。對於微能量或低能量團簇沈積,研究結果指出提高團簇內溫度能有效改善磊晶薄膜的品質,而其中鈀銀團簇沈積的磊晶薄膜更是比鈀鉑薄膜佳。

    This study used the molecular dynamics simulations to investigate the transport phenomena and epitaxial growth of the alloy cluster beam deposition. First, the velocity distributions of the atoms in a nano-alloy cluster were investigated by introducing a series of ternary and binary alloy clusters. The results indicated that the velocity distributions of different types of atoms in both static and moving clusters would obey the Maxwell’s velocity distribution. The diffusing behaviors of the atoms in a cluster were also discussed from a viewpoint of the interatomic interactions. The transport phenomena and the temperature relaxation profiles of the cluster-surface collision system were then studied by simulations of the monometallic cluster deposition. The 2-D analysis of the nanostructure growth mechanisms showed that epitaxial films and voids were both produced by the cluster-island and island-island collision mechanism. As an important characteristic of the thin films formed by cluster deposition, the rocking structures with a nonzero momentum were found on the surface of the growth films and could cause great effects upon the properties of films, especially in the nano-processing and chemical catalysis.
    Finally, the internal temperature dependence of the soft-landing process of Pd1-a-Pta and Pd1-a-Aga clusters was studied. By analysis of the velocity distribution and diffusion coefficient of the bimetallic cluster, Pd atoms were found to improve the diffusibility of Pt atoms in Pd1-a-Pta clusters but reduce the mobility of Ag atoms in Pd1-a-Aga clusters. The analysis of radial composition distributions showed that Pt-core/Pd-shell and Pd-core/Ag-shell structure of the clusters were formed at high internal temperature through the atomic migrations. The epitaxial growth of the deposited nanostructures was also enhanced as the internal temperature of clusters increased.

    中文摘要............................................................................................................I Abstract...........................................................................................................III 誌謝..................................................................................................................V 目錄.................................................................................................................VI 圖目錄..............................................................................................................X 表目錄..........................................................................................................XIX 符號說明.......................................................................................................XX 第一章 緒論...................................................................................................1 1-1 前言....................................................................................................1 1-2 團簇沈積製程介紹............................................................................3 1-3 CBD在工程上之應用........................................................................5 1-3-1 奈米材料的製作…................................................................6 1-3-2 表面加工應用...………………….………...……………….8 1-4 CBD的理論研究方法........................................................................9 1-5 研究動機與目的..............................................................................11 1-6 章節提要..........................................................................................13 第二章 理論與分析方法.............................................................17 2-1 前言..................................................................................................17 2-2凝態物理簡介...................................................................................18 2-2-1 物質的狀態….................................................................….18 2-2-2 凝態物理的發展….....................................................…….20 2-2-3 奈米尺度的凝態物理現象….........................................….21 2-2-4 奈米尺度研究方法…..........................................................23 2-3 統計物理學理論..............................................................................25 2-3-1 基本觀念….....................................................................….25 2-3-2 團簇沈積系統分析.........................................................….27 2-4分子動力學方法..............................................................................29 2-4-1 基本觀念….....................................................................….29 2-4-2分子勢能函數與作用力場..........................................….31 2-4-3運動方程式.....................................................................….36 2-4-4系統初始狀態設定.........................................................….38 2-4-5截斷勢能法.....................................................................….40 2-4-6週期邊界條件...................................................................….41 2-4-7熱傳邊界條件...................................................................….43 2-5 奈米團簇研究方法..........................................................................47 2-5-1 團簇尺寸計算….............................................................….47 2-5-2 速度分佈函數….............................................................….48 2-5-3 平均平方位移與擴散係數….........................................….49 2-5-4 徑向成分分佈函數.........................................................….50 2-6 沈積界面現象研究方法..................................................................50 2-6-1 擴展指數….....................................................................….50 2-6-2 結構參數….....................................................................….51 2-6-3 磊晶指數….....................................................................….52 第三章 奈米合金團簇分析.........................................................................59 3-1 數值模型介紹..................................................................................59 3-2 靜止團簇的分子速度分佈..............................................................59 3-3 移動團簇的分子速度分佈..............................................................62 3-4 團簇分子的自擴散行為..................................................................65 3-5 異種分子相互影響作用..................................................................67 3-6 結論..................................................................................................68 第四章 團簇沈積傳輸現象分析.................................................................83 4-1 數值模型介紹..................................................................................84 4-2 擴散現象與沈積結構分析..............................................................86 4-3 動量和能量傳輸現象......................................................................90 4-4 熱鬆弛過程......................................................................................91 4-5 奈米結構生長機制..........................................................................92 4-5-1 奈米結構擺動現象…..........................................................92 4-5-2 空缺形成和消除機制..........................................................93 4-6 結論..................................................................................................95 第五章 鈀鉑合金薄膜成長研究...............................................................115 5-1 數值模型介紹................................................................................116 5-2 團簇的溫度相依性質分析............................................................117 5-3 沈積擴散現象和磊晶成長分析....................................................119 5-4 結論................................................................................................123 第六章 鈀銀合金薄膜成長研究...............................................................140 6-1 數值模型介紹................................................................................140 6-2 團簇的溫度相依性質分析............................................................141 6-3 沈積擴散現象和磊晶成長分析....................................................143 6-4 結論................................................................................................146 第七章 結論與未來展望...........................................................................164 7-1 總結................................................................................................164 7-2 未來研究方向................................................................................167 參考文獻.......................................................................................................169 個人簡介.......................................................................................................183

    Abraham F. F., Koch S. W. and Desai R. C., Computer-simulation dynamics of an unstable two-dimensional fluid: time-dependent morphology and scaling, Physical Review Letters, 49, pp. 923-926, 1982.
    Akizuki M., Harada M., Ogasawara S., Doi A., Yoneda K., Matsuo J., Yamaguchi T., Takaoka G. H., Ascheron C. E. and Yamada I., Low-damage surface processing by gas cluster ion beams, Nuclear Instruments and Methods in Physics Research B, 99, pp. 229-232, 1995.
    Alivisatos A. P., Semiconductor clusters, nanocrystals, and quantum dots, Science, 271, pp. 933-937, 1996.
    Allen M. P. and Tildesley D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1991.
    Barber D. J. and Loudon R., An introduction to the properties of condensed matter, Cambridge University Press, Cambridge, 1989.
    Bardotti L., Prevel B., Melinon P., Perez A., Hou Q. and Hou M., Deposition of clusters on Au (111) surfaces. II. Experimental results and comparison with simulation, Physical Review B, 62, pp. 2835-2842, 2000.
    Bechstedt F., Principles of Surface Physics, Springer, Berlin, 2003.
    Becker E. W., Bier K. and Henkes W., Z. Phys. 146, p. 333, 1956.
    Binns C., Nanoclusters deposited on surfaces, Surface Science Reports, 44, pp. 1-49, 2001.
    Bromann K., Félix C., Brune H., Harbich W., Monot R., Buttet J. and Kern K., Controlled deposition of size-selected silver nanoclusters, Science, 274, pp. 956-958, 1996.
    Cagin T., Kimura Y., Qi Y., Li H., Ikeda H., Johnson W. L. and Goddard III W. A., Calculation of mechanical, thermodynamic and transport properties of metallic glass formers, in Bulk metallic glasses, Materials Research Society symposia proceedings, vol. 554, pp. 43-48, 1999, Johnson W. L., Inoue A. and Liu C. T. (eds.)
    Calvo S. R. and Balbuena P. B., Molecular dynamics studies of phonon spectra in mono- and bimetallic nanoclusters, Surface Science, 581, pp. 213-224, 2005.
    Carroll S. J., Hall S. G.., Palmer R. E. and Smith R., Energetic impact of size-selected metal cluster ions on graphite, Physical Review Letters, 81, pp. 3715-3718, 1998.
    Chaikin P. M. and Lubensky T. C., Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
    Cheng D., Liu X., Cao D., Wang W. and Huang S., Surface segregation of Ag-Cu-Au trimetallic clusters, Nanotechnology, 18, 475702, 2007.
    Cleveland C. L. and Landmann U., Dynamics of cluster-surface collisions, Science, 257, pp. 355-361, 1992.
    Demchenko I. N., Lawniczak-Jablonska K., Kret S., Novikov A. V., Laval J. Y., Zak M., Szczepanska A., Yablonskiy A. N. and Krasilnik Z. F., The effect of local atomic structure on the optical properties of GeSi self-assembled islands buried in silicon matrix, Nanotechnology, 18, 115711, 2007.
    Dong L., Smith R. W. and Srolovitz D. J., A two-dimensional molecular dynamics simulation of thin film growth by oblique deposition, Journal of Applied Physics, 80, pp. 5682-5690, 1996.
    Fang K. C. and Weng C. I., An investigation into the melting of silicon nanoclusters using molecular dynamics simulations, Nanotechnology, 16, pp. 250-256, 2005.
    Flanagan T. B. and Park C. N., Hydrogen-induced rearrangements in Pd-rich alloys, Journal of Alloys and Compounds, 293-295, pp. 161-168, 1999.
    Gear C. W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1971.
    Haberland H., Insepov Z. and Moseler M., Molecular-dynamics of thin film growth by energetic cluster impact, Physical Review B, 51, pp. 11061-11067, 1995.
    Haberlandt R., Molecules in Interaction with Surfaces and Interfaces, Springer, New York, 2004.
    Haile J. M., Molecular Dynamic Simulation: elementary methods, Wiley, New York, 1997.
    Hendy S. C., Stability of phase coexistence in atomic clusters, Physical Review B, 71, 115404, 2005.
    Henry C. R., Surface studies of supported model catalysts, Surface Science Reports, 31, pp. 235-325, 1998.
    Heyes D. M., Nuevo M. J., Morales J. J. and Branka A. C, Translational and rotational diffusion of model nanocolloidal dispersions studied by molecular dynamics simulations, Journal of Physics: Condensed Matter, 10, pp. 10159-10178, 1998.
    Hoover W. G., Canonical dynamics equilibrium phase-space distribution, Physical Review A, 31, pp. 1695-1697, 1985.
    Hou K. and Hughes R., Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation, Journal of Membrane Science, 214, pp. 43-55, 2003.
    Hou M., Kharlamov V. S. and Zhurkin E. E., Atomic-scale modeling of cluster-assembled thin films, Physical Review B, 66, 195408, 2002.
    Hou Q., Hou M., Bardotti L., Prevel B., Melinon P. and Perez A., Deposition of clusters on Au (111) surfaces. I. Atomic-scale modeling, Physical Review B 62, pp. 2825-2834, 2000.
    Huang K., Introduction to Statistical Physics, Taylor & Francis, New York, 2001.
    Huang K., Statistical Mechanics, Wiley, New York, 1987.
    Ikeshoji T., Hafskjold B., Hashi Y. and Kawazoe Y., Molecular dynamics simulation for the formation of magic number clusters with a lennard-jones potential, Physical Review Letters, 76, pp. 1792-1795, 1996.
    Insepov Z. and Yamada I., Molecular dynamics simulation of cluster ion bombardment of solid surfaces, Nuclear Instruments and Methods in Physics Research B, 99, pp. 248-252, 1995.
    Jensen P., Growth of nanostructures by cluster deposition: Experiments and simple models, Reviews of Modern physics, 71, 1695-1735, 1999.
    Jiménez-Sáez J. C., Pérez-Martin A. M. C. and Jiménez-Rodriguez J. J., Epitaxial matching of small metallic nanoclusters in large-misfit systems, Vacuum, 81, pp. 1515-1518, 2007.
    Ju S. P., Weng C. I., Chang J. G. and Hwang C. C., Topographic study of sputter-deposited film with different process parameters, Journal of Applied Physics, 89, pp. 7825-7832, 2001.
    Kantrowitz A. and Grey J., Review of Scientific Instruments, 22, p. 328, 1951.
    Kim C. K., Kubota A. and Economou D. J., Molecular dynamics simulation of silicon surface smoothing by low-energy argon cluster impact, Journal of Applied Physics, 86, pp. 6758-6762, 1999.
    Kittel C., Introduction to Solid State Physics, Wiley, Hoboken, NJ, 2005.
    Kubo A., Makino T., Sugiyama D. and Tanaka S. I., Molecular dynamics analysis of the wetting front structure in metal / metal systems, Journal of Materials science, 40, pp. 2395-2400, 2005.
    Kwon I., Biswas R., Grest G. S. and Soukoulis C. M., Molecular-dynamics simulation of amorphous and epitaxial Si film grown on Si (111), Physical Review B, 41, pp. 3678-3687, 1990.
    Landman U., Molecular dynamics simulation in material science and condensed matter physics, in computer simulation studies in condensed matter physics, Springer Proceeding in Physics vol. 33, pp. 108-123, 1988, Landau D. P., Mon K. K., Schottler H. B. (eds.)
    Lau J. T., Achleitner A., Ehrke H. U., Langenbuch U., Reif M. and Wuth W., Ultrahigh vacuum cluster deposition source for spectroscopy with synchrotron radiation, Review of Scientific Instruments, 76, 063902, 2005.
    Leach A. R., Molecular Modelling:principles and applications, Prentice Hall, Harlow, 2001.
    Liu H. B., Pal U., Medina A., Maldonado C. and Ascencio J. A., Structural incoherency and structure reversal in bimetallic Au-Pd nanoclusters, Physical Review B, 71, 075403, 2005.
    Lugscheider E. and von Hayn G., Simulation of the film growth and film-substrate mixing during the sputter deposition process, Surface and Coatings Technology, 116-119, pp. 568-572, 1999.
    Luth H., Surfaces and Interfaces of Solid Materials, Springer Verlag, Berlin, 1997.
    Ma S. K., Statistical Mechanics, World Scientific, Philadelphia, 1985.
    Ma X. L. and Yang W., Supersonic wave propagation in Cu under high speed cluster impact, Nanotechnology, 15, pp. 449-456, 2004.
    Marder M. P., Condensed Matter Physics, John Wiley, New York, 2000.
    Meinander K., Frantz J., Nordlund K. and Keinonen J., Upper size limit of complete contact epitaxy, Thin Solid Films, 245, pp. 297-303, 2003.
    Muramoto T., Itabasi K. and Yamamura Y., MD simulation of surface smoothing due to cluster impact: estimation of radiation damage, Nuclear Instruments and Methods in Physics Research B, 228, pp. 1-8, 2005.
    Nosé S., A molecular-dynamics method for simulations in the canonical ensemble, Molecular Physics, 52, pp. 255-268, 1984a.
    Nosé S., A unified formulation of the constant temperature molecular dynamics method, Journal of Chemical Physics, 81, pp. 511-519, 1984b.
    Oura K., Surface science : an introduction, Springer, Berlin, 2003.
    Paillard, V., Melinon, P., Dupuis, V., Perez, J. P., Perez, A. and Champagnon, B. , Diamondlike carbon films obtained by low energy cluster beam deposition: Evidence of a memory effect of the properties of free carbon clusters, Physical Review Letters, 71, pp. 4170-4173, 1993.
    Palacios F., Mendez R. and Iniguez M. P., Molecular dynamics study of metallic surface smoothing by cluster impact, The European Physical Journal D, 24, pp. 319-321, 2003.
    Palmer R. E., Pratontep S. and Boyen H. G., Nanostructured surfaces from size-selected clusters, Nature Materials, 2, pp. 443-448, 2003.
    Park C. N. and Flanagan T. B., Thermodynamics of phase separation in A-B-H alloys: application to Pd-Pt-H, Scripta Materialia, 37, pp. 1709-1714, 1997.
    Pauwels B., Tendeloo G. V., Bouwen W., KuhnL. T., Lievens P., Lei H. and Hou M., Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations, Physical Review B, 62, pp. 103831-10393, 2000.
    Qi Y., Cagin T., Kimura Y. and Goddard III W. A., Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Physical Review B, 59, pp. 3527-3533, 1999.
    Qi Y., Cagin T., Kimura Y. and Goddard III W. A., Viscosities of liquid metal alloys from nonequilibrium molecular dynamics. Journal of Computer-Aided Materials Design, 8, pp. 233-243, 2002.
    Rafii-Tabar H. and Chirazib A., Multi-scale computational modelling of solidification phenomena, Physics Reports, 365, pp. 145-249, 2002.
    Rafii-Tabar H. and Sutton A. P., Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys, Philosophical Magazine Letters, 63, pp. 217-224, 1991.
    Rafii-Tabar H., Modeling the nano-scale phenomena in condensed matter physics via computer-based numerical experiment, Physics Reports, 325, pp. 239-310, 2000.
    Ramaprabhu S., Thermodynamics and stability of dissolved hydrogen in Pd rich binary and ternary solid solution alloys, International Journal of Hydrogen Energy, 23, pp. 787-796, 1998.
    Rapaport D. C., The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 2004.
    Rattunde O., Moseler M., Hafele A., Kraft J., Rieser D. and Haberland H., Surface smoothing by energetic cluster impact, Journal of Applied Physics 90, pp. 3226-3231, 2001
    Ren G., Shi H. and Xing Y., Synthesis and composition evolution of bimetallic Pd-Pt alloy nanoparticles, Nanotechnology, 18, 385604, 2007.
    Resende F. J. and Costa B. V., Molecular dynamics study of the copper cluster deposition on a Cu (010) surface, Surface Science, 481, pp. 54-66, 2001.
    Richert R. and Blumen A. (eds.), Disorder effects on relaxational processes: glasses, polymers, proteins, Springer, Berlin, 1994.
    Rousset J. L., Cadrot A. M., Cadete Santos Aires F. J.; Renouprez A. J., Pellarin M. and Khanra B. C., Investigations on supported bimetallic PdPt nanostructures, Surface Science, 352-354, pp. 583-587, 1996.
    Rubinovich L. and Polak M., Prediction of distinct surface segregation effects due to coordination-dependent bond-energy variations in alloy nanoclusters, Physical Review B, 80, 045404, 2009.
    Sankaranarayanan S. K. R. S., Bhethanabotla V. R. and Joseph B., Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters, Physical Review B, 71, 195415, 2005a.
    Sankaranarayanan S. K. R. S., Bhethanabotla V. R. and Joseph B., Molecular dynamics simulations of the structural and dynamic properties of graphite-supported bimetallic transition metal clusters, Physical Review B, 72, 195405, 2005b.
    Sankaranarayanan S. K. R. S., Bhethanabotla V. R. and Joseph B., Molecular dynamics simulation study of the melting and structural evolution of bimetallic Pd-Pt nanowires, Physical Review B, 74, 155441, 2006.
    Schneider T. and Stoll E., Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Physical Review B, 17, pp. 1302-1322, 1978a.
    Schneider T. and Stoll E., Molecular-dynamics study of second sound, Physical Review B, 18, pp. 6468-6482, 1978b.
    Smith R. W. and Srolovitz D. J., Void formation during film growth: A molecular dynamics simulation study, Journal of Applied Physics, 79, pp. 1448-1457, 1996.
    Sutton A. P. and Balluffi R. W., Interfaces in Crystalline Materials, Clarendon, Oxford, 1995.
    Sutton A. P. and Chen J., Long-range Finnis-Sinclair potentials, Philosophical Magazine Letters, 61, pp. 139-146, 1990.
    Tabor D., Gases, Liquids, and Solids:and other states of matter, Cambridge University Press, Cambridge, 1991.
    Takagi T., Yamada I., Kunori M. and Kobiyama S., Proc. 2nd Int. Conf. Ion Sources, Vienna, p. 790, 1972.
    Tartaglino U., Zykova-Timan T., Ercolessib F. and Tosattia E., Melting and nonmelting of solid surfaces and nanosystems, Physics Reports, 411, pp. 291-321, 2005.
    Tien C. L., Majumdar A. and Gerner F. M., Microscale Energy Transport, Taylor & Francis, Washington, D. C., 1998.
    Toukmaji A. Y. and Board Jr. J. A., Ewald summation techniques in perspective: a survey, Computer Physics Communication, 95, pp. 73-92, 1996.
    Turra M., Waldschmidt B., Kaiser B. and Schäfer R., An improved time-of-flight method for cluster deposition and ion-scattering experiments, Review of Scientific Instruments, 79, 013905, 2008.
    Van Vlack L. H., Elements of Materials Science and Engineering, Addison-Wesley, Reading, Mass., 1989.
    Vladkov M. and Jean-Louis Barrat J. L., Modeling Transient Absorption and Thermal Conductivity in a Simple Nanofluid, Nano Letters, 6, pp. 1224-1228, 2006.
    Weaver J. H. and Waddill G. D., Cluster assembly of interfaces: Nanoscale engineering, Science, 251, pp. 1444-1451, 1991.
    Webb E. B., Hoyt J. J., Grest G. S. and Heine D. R., Atomistic simulations of reactive wetting in metallic systems, Journal of Materials science, 40, pp. 2281-2286, 2005.
    Woodcock L. V., Isothermal molecular dynamics calculations for liquid salts, Chemical Physics Letters, 10, p. 257, 1971.
    Xirouchaki C., Surface nanostructures created by cluster-surface impact, Vacuum, 73, pp. 123-129, 2004.
    Yamada I., A short review of ionized cluster beam technology, Nuclear Instruments and Methods in Physics Research B, 99, pp. 240-243, 1995.
    Yamada I. and Takaoka G. H., Ionized cluster beams: Physics and technology, Japanese Journal of Applied Physics, 32, pp. 2121-2141, 1993.
    Yamada I., Ionized cluster beam deposition and epitaxy of metal-films on large lattice misfit substrates, Physica Scripta, T35, pp.245-250, 1991.
    Yamaguchi T., Matsuo J., Akizuki M., Ascheron C. E., Takaoka G. H. and Yamada I., Sputtering effect of gas cluster ion beams, Nuclear Instruments and Methods in Physics Research B, 99, pp. 237-239, 1995.
    Yang S. H., Draboldz D. A., Adamsx J. B., Ordej´on P. and Glassford K., Density functional studies of small platinum clusters, Journal of Physics: Condensed Matter, 9, pp. L39-L45, 1997.
    Yasumatsu H. and Kondow T., Reactive scattering of clusters and cluster ions from solid surfaces, Reports on Progress in Physics, 66, pp. 1783-1832, 2003.
    Yeadon M., Ghaly M., Yang J. C., Averback R. S. and Gibson J. M., “Contact epitaxy” observed in supported nanoparticles, Applied Physics Letters, 73, pp. 3208-3210, 1998.
    Zhao S., Bi F., Wan J., Han M., Song F., Liu J. and Wang G., Cluster-assembled Tb-Fe nanostructured films produced by low energy cluster beam deposition, Nanotechnology, 18, 265705, 2007.
    Zhou X. W., Zimmerman J. A., Wong B. M. and Hoyt J. J., An embedded-atom method interatomic potential for Pd-H alloys, Journal of Materials Research, 23, 704-718, 2008.
    王竹西,統計物理學導論,凡異出版社,臺北巿,1985。
    朱訓鵬,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學機械工程學系,2002。
    何雅玲,王勇,李慶,格子Boltzmann方法的理論及應用,科學出版社,北京,2008。
    郭照立,鄭楚光,格子Boltzmann方法的原理及應用,科學出版社,北京,2008。
    劉靜,微米/納米尺度傳熱學,科學出版社,北京,2001。

    下載圖示 校內:2011-01-26公開
    校外:2011-01-26公開
    QR CODE