| 研究生: |
陳思豪 Chen, Ssh-Hao |
|---|---|
| 論文名稱: |
並四苯/富勒烯平面異質界面二極體之單重態裂變與電荷轉移分子的磁場效應 Magnetic Field Effect of Singlet Fission and Charge Transfer Complex in Tetracene/Fullerene Planar Heterojunction Diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 並四苯 、富勒烯 、磁電導效應 、單重態激子裂變 、電荷轉移 |
| 外文關鍵詞: | Tetracene, Fullerene (C60), Magneto-conductance, Singlet Fission, Charge Transfer |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗研究有機並四苯(Tetracene)及富勒烯(C60)製成半導體元件之界面電荷轉移磁電導效應。並四苯材料中本身具有強烈的單重態激子裂變機制(Singlet fission),此裂變機制會因磁場的改變反應到磁電導效應中。當富勒烯加入到元件中時,發現原本的磁電導效應產生極大改變使磁電導效應趨勢大幅改變,我們預測此變化為並四苯-富勒烯兩材料界面處產生電荷轉移所致。從實驗中驗證,當在並四苯與富勒烯半導體元件中間加入一層阻擋層,阻擋電荷轉移發生,可以研究並驗證出單重態激子裂變機制與並四苯-富勒烯界面產生的電荷轉移(Charge transfer complex)是一個彼此競爭的機制,兩種機制都有對應的磁電導效應並在多寡之間產生競爭的磁電導效應。最後也透過經驗公式的模擬及光致發光的磁效應兩個實驗來進一步佐證我們所提出解釋磁電導趨勢改變之理論的確定性。
The purpose of this thesis is to investigate magneto-conductance (MC) mechanism under illumination between tetracene organic diodes and tetracene/C60 organic diodes. Modulating by the magnetic field in the tetracene organic diodes can further make sure the Singlet Fission (SF) mechanism in the tetracene active layer. However,when we deposit the fullerene (C60) on the tetracene active layer to become a planar heterojunction diodes. We investigate the magneto-conductance (MC) response will be varied. The MC response will turn into M shape,because of the Charge Transfer (CT) mechaism at tetracene/C60 interfaces dominate the photocurrent in the organic heterojunction diodes. Our investigation demonstrate these influence by depositing C60 will compete with the magneto-conductance related to singlet fission.
C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett. 39, 1098 (1977).
C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51, 913 (1987).
L. S. Huang, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett. 70, 152 (1997).
H. Hoppe, and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells”, J. Mater. Chem. 16, 45 (2006).
M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells”, Adv. Mater. 20, 2116 (2008).
D. Braga, and G. Horowitz, “Hige-performance organic field-effect transistors”, Adv. Mater. 21, 1473 (2009).
J. Cornil, J. L. Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar transport in organic conjugated materials”, Adv. Mater. 19, 1791 (2007).
V. Ern, and R. E. Merrifield, “Magnetic field effect on triplet exciton quenching in organic crystals”, Phys. Rev. Lett. 21, 609 (1968).
R. E. Merrifield, P. Avakian, and R. P. Groff, “Fission of singlet excitons into pairs of triplet excitons in tetracene crystals”, Chem. Phys. Lett. 3, 155 (1969).
M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals”, 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
U. E. Steiner, and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena”, Chem. Rev. 89, 51 (1989).
E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generation in poly(phenylene vinylenes)“, Phys. Rev. B 46, 9320 (1992).
E. L. Frankevich, “On mechanisms of population of spin substates of polaron pairs”, Chem. Phys. 297, 315 (2004).
V. Dyakonov, and E. L. Frankevich, “On the role played by polaron pairs in photophysical processes in semiconducting polymers”, Chem. Phys. 227, 203 (1998).
B. Hu, L. Yan, and M. Shao, “Magnetic-Field Effects in Organic Semiconducting
Materials and Devices”, Adv. Mater. 21, 1500 (2009)
J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes”, Chem. Phys. Lett. 380, 710 (2003).
Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices”, Phys. Rev. B 72, 205202 (2005).
B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors”, Nat. Mater. 6, 985 (2007).
Z. H. Xu, and B. Hu, “Photovoltaic processes of singlet and triplet excited states in organic solar cells”, Adv. Funct. Mater. 18, 1 (2008).
B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices”, Adv. Mater. 21, 1500 (2009).
Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves”, Nat. 427, 821 (2004).
M. Wohlgenannt, and Z. V. Vardeny, “Spin-dependent exction formation rates in π–conjugated materials”, J. Phys. Condens. Matter 15, R83 (2003).
I. V. Tolstov, A. V. Belov, M. G. Kaplunov, I. K. Yakuschenko, N. G. Spitsina, M. M. Triebel, and E. L. Frankevich, “On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS”, J. Lumin. 112, 368 (2005).
N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline)”, Phys. Rev. B 80, 241201R (2009).
F. J. Wang, H. Ba¨ssler, and Z. V. Vardeny, “Magnetic Field Effects in π-Conjugated Polymer-Fullerene Blends:Evidence for Multiple Components”, Phys. Rev. Lett. 101, 236805 (2008).
T. D. Nguyen, G. H. Markosian, F. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund, and Z. V. Vardeny, “Isotope effect in spin response of π-conjugated polymer films and devices”, Nat. Mater. 9, 345 (2010).
Q. Peng, W. Li, S. Zhang, P. Chen, Feng Li, and Y. Ma, “Evidence of the reverse intersystem crossing in intra-molecular charge-transfer fluorescence-based organic light-emitting devices through magneto-electroluminescence measurements”, Adv. Opt. Mater. 1, 362 (2013).
H. Bouchriha, V. Ern, J. L. Fave, C. Guthmann, M. Schott, “Magnetic field dependence of singlet exciton fission and fluorescence in crystalline tetracene at 300 K”, J. Phys. France 39, 257 (1978).
H. Liu, W. Y. Jia, Y. Zhang, Q. M. Zhang, Y. L. Lei, C. L. Lu, Y. Z. Ling, Z. H. Xiong, “Tuning magneto-electroluminescence in oranic light emitting diodes by controlling the competition between singlet fission and triplet fusion”, Synth. Met. 198, 6 (2014).
P. J. Jadhav, A. Mohanty, J. Sussman, J. Lee, and M. A. Baldo, “Singlet Exciton Fission in Nanostructured Organic Solar Cells”, Nano Lett. 11, 1495 (2011).
T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. V. Voorhis, and M. A. Baldo, “Singlet fission efficiency in tetracene-based organic solar cells”, Appl. Phys. Lett. 104, 193901 (2014).
C. Y. Cheng, N. Chitraningrum, X. M. Chen, T. C. Wen, and T. F. Guo, “Magnetic field effect of the singlet fission reaction in tetracene-based diodes”, Org. electron. 56, 11 (2018).
A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. A. Seifried, H. Bässler, and R. H. Friend, “Exciton Fission and Charge Generation via Triplet Excitons in Pentacene/C60 Bilayers”, J. Am. Chem. Soc. 132, 12698 (2010).
T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. V. Voorhis, and M. A. Baldo, “Singlet fission efficiency in tetracene-based organic solar cells”, Appl. Phys. Lett. 104, 193901 (2014).
W. Holzer, A. Penzkofer, and T. Tsuboi, “Absorption and emission spectroscopic characterization of Ir(ppy)3”, Chem. Phys. 308, 93 (2005).
A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers”, Phys. Rev. Lett. 86, 1358 (2001).
A. Köhler, and D. Beljonne, “The singlet-triplet exchange energy in conjugated polymers”, Adv. Funct. Mater. 14, 11 (2004).
A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers”, Phys. Rev. Lett. 93, 066803 (2004).
M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials”, Phys. Rev. B 68, 075211 (2003).
W. Helfrich, “Destruction of triplet excitons in anthracene by injected electrons”, Phys. Rev. Lett. 16, 401 (1966).
M. Wittmer, and I. Z. Gränacher, “Exciton-charge carrier interactions in the electroluminescence of crystalline anthracene”, J. Chem. Phys. 63, 4187 (1975).
J. Levinson, S. Z. Weisz, A. Cobas, and A. Rolón, “Determination of the triplet exciton-trapped electron interaction rate constant in anthracene crystals”, J. Chem. Phys. 52, 2794 (1970).
C. J. Brabec, G. Zerza, G. Cerullo, S. D. Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, “Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time”, Chem. Phys. Lett. 340, 232 (2001).
F. Millicent, B. Smith, and J. Michl, “Singlet fission”, Chem. Rev. 110, 6891 (2010).
Y. F. Zhang, and S. R. Forrest, “Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes”, Phys. Rev. Lett. 108, 267404 (2012).
G. B. Piland, J. J. Burdett, D. Kurunthu, and C. J. Bardeen, “Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene”, J. Phys. Chem. C 117, 1224 (2013).
R. E. Merrifield, “Theory of magnetic field effects on the mutual annihilation of triplet excitons”, J. Chem. Phys. 48, 4318 (1968).
E. C. Greyson, B. R. Stepp, X. D. Chen, A. F. Schwerin, I. Paci, M. B. Smith, A. Akdag, J. C. Johnson, A. J. Nozik, J. Michl, and M. A. Ratner, “Singlet exciton fission for solar cell applications:energy aspects of interchromophore coupling”, J. Phys. Chem. B 114, 14223 (2010).
J. W. Bai, P. Chen, Y. L. Lei, Y. Zhang, Q. M. Zhang, Z. H. Xiong, and F. Li, “Studying singlet fission and triplet fusion by magneto-electroluminescence method in singlet–triplet energy-resonant organic light-emitting diodes”, Org. Electron 14 169 (2014).
J. Li, Z. H. Chen, Y. L. Lei, Z. H. Xiong, Y. Zhang, “Competition between singlet
exciton fission, radiation, and dissociation measured in rubrene-doped amorphous
films”, Synth. Met. 207, 13 (2015).
C. A. Nelson, N. R. Monahan, and X. Y. Zhu, “Exceeding the Shockley–Queisser limit in solar energy conversion”, Energy Environ. Sci. 6, 3508 (2013).
C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions”, Appl. Phys. Lett. 86, 243506 (2005).
W. S. Huang, Z. R. Xu, B. Hu, T. F. Guo, J. C. A. Huang, and T. C. Wen “Magnetoconductance responses of triplet polaron pair charge reaction In hyperfine coupling regime”, Appl. Phys. Lett. 103, 253304 (2013).
W. S. Huang, Z. R. Xu, K. C. Chen, T. F. Guo, J. C. A. Huang, and T. C. Wen “Modulations in line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes”, Org. Electron. 15, 3076 (2014).
S. Sampat, A. D. Mohite, B. Crone, S. Tretiak, A. V. Malko, A. J. Taylor, and D. A. Yarotski, “Tunable charge transfer dynamics at Tetracene/LiF/C60 interfaces”, J. Phys. Chem. C. 119, 1286 (2015).
P. Chen, Q. Peng, L. Yao, N. Gao, and F. Li, “Identifying the efficient inter-conversion between singlet and triplet charge-transfer states by magneto-electroluminescence study”, Appl. Phys. Lett. 102, 063301 (2013).
N. J. Thompson, E. Hontz, D. N. Congreve, M. E. Bahlke, S. Reineke, T. V. Voorhis, and M. A. Baldo, “Nanostructured Singlet Fission Photovoltaics Subject to Triplet‐Charge Annihilation”, Adv. Mater. 26, 1366 (2014).
Y. Krupskaya, I. G. Lezama, and A. F. Morpurgo, “Tuning the Charge Transfer in Fx‐TCNQ/Rubrene Single‐Crystal Interfaces”, Adv. Funct. Mater. 26, 2334 (2014).
P. B. Deotare, W. Chang, E. Hontz, D. N. Congreve, L. Shi, P. D. Reusswig, B. Modtland, M. E. Bahlke, C. K. Lee, A. P. Willard, V. Bulović, T. Van Voorhis, and M. A. Baldo, “Nanoscale transport of charge-transfer states in organic donor–acceptor blends”, Nat. Commun. 14, 1130 (2015).
R. Shivanna, S. Shoaee, S. Dimitrov, S. K. Kandappa, S. Rajaram, J. R. Durrant, and K. S. Narayan, “Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor”, Energy Environ. Sci. 7, 435 (2014).
T. Basel, D. Sun, S. Baniya, R. McLaughlin, H. Choi, O. Kwon, and Z. V. Vardeny, “Magnetic field enhancement of organic light‐emitting diodes based on electron donor–acceptor exciplex”, Adv. Electron. Mater. 2, 1500248 (2015).
A. H. D. -Wolfman, B. Khachatryan, B. R. Gautam, L. Tzabary, A. Keren, N. Tessler, Z. V. Vardeny, and E. Ehrenfreund, “Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent”, Nat. Commun. 5, 4529 (2014).
J. Xiang, Y. B. Chen, D. Yuan, W. Y. Jia, Q. M. Zhang, and Z. H. Xiong, “Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices”, Appl. Phys. Lett. 109, 103301 (2016).
H. Gu, S. Chang1, H. Lu, D. F. Holford, T. Zhang, J. X. Hu, W. P. Gillin, and T. Kreouzis, “Impurity effects on charge transport and magnetoconductance in a single layer poly(3-hexyl-thiophene) device”, Appl. Phys. Lett. 108, 203301 (2016).
Y. C. Hsiao, T. Wu, M. X. Li, W. Qin, L. Yu, and B. Hu, “ Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor:acceptor interfaces in organic solar cells under device-operating condition”, Nano Energy 26, 595 (2016).
校內:2025-08-01公開