簡易檢索 / 詳目顯示

研究生: 陳思豪
Chen, Ssh-Hao
論文名稱: 並四苯/富勒烯平面異質界面二極體之單重態裂變與電荷轉移分子的磁場效應
Magnetic Field Effect of Singlet Fission and Charge Transfer Complex in Tetracene/Fullerene Planar Heterojunction Diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 並四苯富勒烯磁電導效應單重態激子裂變電荷轉移
外文關鍵詞: Tetracene, Fullerene (C60), Magneto-conductance, Singlet Fission, Charge Transfer
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究有機並四苯(Tetracene)及富勒烯(C60)製成半導體元件之界面電荷轉移磁電導效應。並四苯材料中本身具有強烈的單重態激子裂變機制(Singlet fission),此裂變機制會因磁場的改變反應到磁電導效應中。當富勒烯加入到元件中時,發現原本的磁電導效應產生極大改變使磁電導效應趨勢大幅改變,我們預測此變化為並四苯-富勒烯兩材料界面處產生電荷轉移所致。從實驗中驗證,當在並四苯與富勒烯半導體元件中間加入一層阻擋層,阻擋電荷轉移發生,可以研究並驗證出單重態激子裂變機制與並四苯-富勒烯界面產生的電荷轉移(Charge transfer complex)是一個彼此競爭的機制,兩種機制都有對應的磁電導效應並在多寡之間產生競爭的磁電導效應。最後也透過經驗公式的模擬及光致發光的磁效應兩個實驗來進一步佐證我們所提出解釋磁電導趨勢改變之理論的確定性。

    The purpose of this thesis is to investigate magneto-conductance (MC) mechanism under illumination between tetracene organic diodes and tetracene/C60 organic diodes. Modulating by the magnetic field in the tetracene organic diodes can further make sure the Singlet Fission (SF) mechanism in the tetracene active layer. However,when we deposit the fullerene (C60) on the tetracene active layer to become a planar heterojunction diodes. We investigate the magneto-conductance (MC) response will be varied. The MC response will turn into M shape,because of the Charge Transfer (CT) mechaism at tetracene/C60 interfaces dominate the photocurrent in the organic heterojunction diodes. Our investigation demonstrate these influence by depositing C60 will compete with the magneto-conductance related to singlet fission.

    目錄 摘要……………………………………………………………………………I Abstract……………………………………………………………………….II 誌謝…………………………………………………………...……………VIII 目錄………………………………………………………………………… X 圖目錄……………………………………………………………………...XIV 第一章 研究領域與實驗動機 1 1-0 前言-有機半導體元件之介紹 1 1-1 有機半導體元件磁場效應 3 1-2 實驗研究動機 15 1-3 大綱 17 第二章 有機磁效應理論相關機制之討論 18 2-1 氫原子模型自旋量子效應 18 2-1-a 自旋軌道交互耦合作用 (Spin-orbital coupling) 19 2-1-b 超精細結構 (Hyperfine interaction) 21 2-1-c 黎曼效應 (Zeeman effect) 23 2-1-d 自旋交互耦合作用力 (Spin Exchange interaction) 24 2-2 激發態載子之磁場效應 27 2-2-a 有機材料之分子內激發態與分子間激發態 28 2-2-b 系統間轉移能力(Intersystem crossing-ISC) 30 2-2-c 三重態激子與載子交互作用(Triplet-charge reaction) 31 2-2-d 單重態裂變機制(Singlet fission) 32 2-3 結論 35 第三章 實驗製作流程與量測分析方法 36 3-1 有機半導體元件之製程 36 3-2 氧化銦錫(ITO)透明導電玻璃基板的製備 38 3-2-a 基板之切割 38 3-2-b 基板之清洗 38 3-2-c 黃光顯影(Photolithography) 39 3-3 有機半導體元件之製備 43 3-3-a 基板之清洗 43 3-3-b 電洞傳輸層(PEDOT:PSS)之製程 43 3-3-c主動層並四苯(Tetracene)、富勒烯(C60)、阻擋層(LiF、DPEPO、BCP……)與陰極BCP之蒸鍍製程 44 3-3-d 金屬電極-鋁(Al)的製程 47 3-4 有機半導體元件之量測與分析 48 3-4-a 有機半導體元件之封裝 48 3-4-b 磁效應量測儀器之相關架設 49 3-4-c 有機半導體元件電性與磁性的量測與分析與訊號處理 51 3-4-d 光致發光(photoluminescence, PL)光譜儀 53 3-5 結論 55 第四章 並四苯/富勒烯平面異質界面二極體之單重態裂變與電荷轉移分子的磁場效應 56 4-0 前言 56 4-1並四苯(Tetracene)單-雙層元件之磁電導效應 58 4-1-a單層並四苯主動層元件之特性 58 4-1-b單層元件磁場特性分析及來源機制 59 4-1-c雙層元件磁場特性分析及來源機制 62 4-1-d 結論 65 4-2加入不同阻擋層抑制電荷轉移之磁電導效應 67 4-2-a使用氟化鋰(LiF)為阻擋層之磁電導效應 67 4-2-b使用DPEPO為阻擋層之磁電導效應 69 4-2-c使用弱阻擋能力BCP為阻擋層之磁電導效應 74 4-2-d利用經驗公式模擬磁電導效應之趨勢變化 77 4-2-e結論 83 4-3並四苯/富勒烯材料-光致發光於磁場下之效應 84 4-3-a論並四苯薄膜於磁場下光致發光之效應 84 4-3-b論並四苯/富勒烯薄膜於磁場下光致發光之效應 86 4-3-c論並四苯/阻擋層/富勒烯薄膜於磁場下光致發光之效應 86 4-3-結論 87 第五章 結論與未來展望 88 5-1 結論 88 5-2 未來展望 90 參考資料 92   圖目錄 圖【1-0-1】:有機共軛高分子能隙結構的示意圖。 2 圖【1-1-1】:蒽晶體之延遲螢光於磁場下效應比較圖[8]。 4 圖【1-1-2】:三種PPV衍生物結構示意圖 5 圖【1-1-3】:(a)PPPV光電流於磁場下的磁效應變化圖,(b)PPV、DMOP-PPV、PPPV溫度相關的磁效應,(c)照光下激發態載子與極化子對之能量轉換示意圖[12]。 6 圖【1-1-4】:(a)Alq3有機分子結構圖,(b)Alq3元件結構與儀器架設示意圖(c)Alq3元件電激發光與光電流的磁效應,(d)載子注入形成激發態與能量轉換示意圖[16]。 7 圖【1-1-5】:PFO螢光高分子結構示意圖 8 圖【1-1-6】: (a)PFO有機半導體元件基本結構,(b)(c)為外加不同偏壓的磁阻變化,(d)定電壓下的電激發光磁效應與磁電導變化[17]。 9 圖【1-1-7】:(a)雙載子注入之正負組成磁電導效應示意圖,(b)單三重態極化子能階差示意圖,(c)單重態激子與三重態激子能階差示意圖[18]。 11 圖【1-1-8】:Alq3與Alq3-d18在不同外加偏壓下之磁電導效應變化(●)Alq3元件(▲)Alq3-d18元件[24]。 12 圖【1-1-9】:(a)TPA-NZP之材料結構(b)不同外加偏壓之MEL實驗結果[27]。 14 圖【2-1-1】:單重態與三重態載子自旋進動的示意圖[15]。 25 圖【2-2-1】:電子-電洞對之距離與能量關係示意圖[39]。 29 圖【2-2-2】:黎曼效應,(a)外加弱磁場下∆EST>∆EZ,(b)外加大磁場下∆EST<∆EZ。 30 圖【2-2-3】:單重態裂變示意圖。 33 圖【2-2-4】:紅瑩烯元件,溫度變化下的電激發光磁效應(20K-300K)[49]。 34 圖【3-1-1】:有機半導體元件結構示意圖。 37 圖【3-2-1】:塗佈光阻之氧化銦錫玻璃基板側面示意圖。 39 圖【3-2-2】:曝光過程中氧化銦錫玻璃基板側面示意圖。 40 圖【3-2-3】:顯影後氧化銦錫玻璃基板側面示意圖。 41 圖【3-2-4】:蝕刻完成後氧化銦錫玻璃基板側面示意圖。 42 圖【3-2-5】:蝕刻後氧化銦錫玻璃基板俯視示意圖,左圖:切割前(75 mm×80 mm);右圖:切割後(15 mm×20 mm)。 42 圖【3-3-1】:PEDOT與PSS結構圖。 44 圖【3-3-2】:左:並四苯(Tetracene),右:富勒烯(C60)的材料結構圖。 45 圖【3-3-3】:左:DPEPO,右:BCP的材料結構圖。 45 圖【3-3-4】:空白遮罩(上)與電極遮罩(下)樣式示意圖。 46 圖【3-3-5】:物理氣相沉積鍍膜系統(Physical vapor deposition,PVD)示意圖。 46 圖【3-3-6】:元件示意圖,左圖結構:ITO/PEDOT:PSS/Tetracene/阻擋層/ C60 (尚未蒸鍍電極-鋁);右圖結構:ITO/PEDOT:PSS/Tetracene/阻擋層/ C60 /BCP/Al。 47 圖【3-3-7】:元件立體結構示意圖 47 圖【3-4-1】:元件封裝流程示意圖。 49 圖【3-4-2】:磁場量測儀器架設示意圖。 50 圖【3-4-3】:鹵素燈頻譜分布。 50 圖【3-4-4】:左圖:未扣除Stress效應之量測磁電導,右圖:整理過後之磁電導效應圖。 53 圖【4-0-1】:左圖:單層並四苯有機半導體元件結構圖 57 右圖:並四苯:富勒烯有機半導體元件結構圖 57 圖【4-0-2】:在照光下且無外加偏壓之磁電導隨磁場大小變化圖,左圖為單層Tetracene元件,右圖為雙層Tetracene/C60元件。 57 圖【4-1-1】:左圖:無照光激發下之單層元件磁電導特性曲線,右圖: 照光激發下之單層元件磁電導特性曲線 58 圖【4-1-2】:並四苯有機半導體元件在照鹵素燈光下之磁電導效應。 60 圖【4-1-3】:W型磁電導生成機制示意圖 61 圖【4-1-4】:雙層異質界面元件結構之磁電導效應。 64 圖【4-1-5】:電荷轉移分子形成光電流示意圖 64 圖【4-1-6】: 單層並四苯元件之磁電導機制示意圖。 65 圖【4-2-1】:加入阻擋層之元件結構圖 67 圖【4-2-2】:不同厚度LiF為阻擋層之磁電導趨勢圖 68 圖【4-2-3】:DPEPO為阻擋層之能階示意圖 69 圖【4-2-4】:不同厚度之DPEPO阻擋層與並四苯/富勒烯薄膜之螢光光譜 70 圖【4-2-5】:加入不同厚度DPEPO阻擋層之並四苯/富勒烯雙層元件之磁電導變化趨勢圖。 72 圖【4-2-6】:不同DPEPO阻擋層厚度雙層元件磁電導趨勢疊加圖 72 圖【4-2-7】:單純DPEPO元件之磁電導趨勢圖。 73 圖【4-2-8】:BCP於元件內能階示意圖。 74 圖【4-2-9】:加入不同厚度BCP阻擋層之並四苯/富勒烯雙層元件之磁電導變化趨勢圖。 76 圖【4-2-10】:不同BCP阻擋層厚度雙層元件磁電導趨勢疊加圖 76 圖【4-2-11】:左圖:擬合並四苯有機半導體之磁電導趨勢圖 78 右圖:擬合並四苯/富勒烯有機半導體之磁電導趨勢圖 78 圖【4-2-12】:單重態裂變與電荷轉移機制磁電導疊加示意圖 79 79 圖【4-2-13】:20nm DPEPO為阻擋層之磁電導機制疊加模擬示意圖 80 圖【4-2-14】:左圖:不同DPEPO厚度為阻擋層之雙層元件磁電導趨勢 81 右圖: 利用單重態裂變函數及電荷轉移函數疊加之擬合圖。 81 圖【4-2-15】:左圖:不同BCP厚度為阻擋層之雙層元件磁電導趨勢 82 右圖: 利用單重態裂變函數及電荷轉移函數疊加之擬合圖。 82 圖【4-2-16】不同材料之阻擋層厚度對單重態裂變函數及電荷轉移函數比值作圖。 82 圖【4-2-17】:磁電導主導機制趨勢示意圖。 83 圖【4-3-1】:並四苯薄膜和並四苯元件之光致發光磁效應與磁電導效應 85 圖【4-3-2】:並四苯薄膜光致發光磁效應之機制示意圖 85 圖【4-3-3】:並四苯/阻擋層/富勒烯薄膜之光致發光磁效應趨勢圖 87 圖【5-1-1】:並四苯/富勒烯有機半導體元件內磁電導機制之示意圖。 89 圖【5-2-1】: 低溫限制電荷轉移機制示意圖 91 圖【5-2-2】:低溫下雙層元件磁電導趨勢變化圖 91

    C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett. 39, 1098 (1977).
    C. W. Tang, and S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 51, 913 (1987).
    L. S. Huang, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett. 70, 152 (1997).
    H. Hoppe, and N. S. Sariciftci, “Morphology of polymer/fullerene bulk heterojunction solar cells”, J. Mater. Chem. 16, 45 (2006).
    M. Lenes, G. J. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, K. J. Hummelen, and P. W. M. Blom, “Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells”, Adv. Mater. 20, 2116 (2008).
    D. Braga, and G. Horowitz, “Hige-performance organic field-effect transistors”, Adv. Mater. 21, 1473 (2009).
    J. Cornil, J. L. Brédas, J. Zaumseil, and H. Sirringhaus, “Ambipolar transport in organic conjugated materials”, Adv. Mater. 19, 1791 (2007).
    V. Ern, and R. E. Merrifield, “Magnetic field effect on triplet exciton quenching in organic crystals”, Phys. Rev. Lett. 21, 609 (1968).
    R. E. Merrifield, P. Avakian, and R. P. Groff, “Fission of singlet excitons into pairs of triplet excitons in tetracene crystals”, Chem. Phys. Lett. 3, 155 (1969).
    M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals”, 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
    U. E. Steiner, and T. Ulrich, “Magnetic field effects in chemical kinetics and related phenomena”, Chem. Rev. 89, 51 (1989).
    E. L. Frankevich, A. A. Lymarev, I. Sokolik, F. E. Karasz, S. Blumstengel, and H. H. Horhold, “Polaron-pair generation in poly(phenylene vinylenes)“, Phys. Rev. B 46, 9320 (1992).
    E. L. Frankevich, “On mechanisms of population of spin substates of polaron pairs”, Chem. Phys. 297, 315 (2004).
    V. Dyakonov, and E. L. Frankevich, “On the role played by polaron pairs in photophysical processes in semiconducting polymers”, Chem. Phys. 227, 203 (1998).
    B. Hu, L. Yan, and M. Shao, “Magnetic-Field Effects in Organic Semiconducting
    Materials and Devices”, Adv. Mater. 21, 1500 (2009)
    J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes”, Chem. Phys. Lett. 380, 710 (2003).
    Ö. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Köhler, M. K. Al-Suti, and M. S. Khan, “Large magnetoresistance in nonmagnetic π–conjugated semiconductor thin film devices”, Phys. Rev. B 72, 205202 (2005).
    B. Hu, and Y. Wu, “Tuning magnetoresistance between positive and negative values in organic semiconductors”, Nat. Mater. 6, 985 (2007).
    Z. H. Xu, and B. Hu, “Photovoltaic processes of singlet and triplet excited states in organic solar cells”, Adv. Funct. Mater. 18, 1 (2008).
    B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices”, Adv. Mater. 21, 1500 (2009).

    Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, “Giant magnetoresistance in organic spin-valves”, Nat. 427, 821 (2004).
    M. Wohlgenannt, and Z. V. Vardeny, “Spin-dependent exction formation rates in π–conjugated materials”, J. Phys. Condens. Matter 15, R83 (2003).
    I. V. Tolstov, A. V. Belov, M. G. Kaplunov, I. K. Yakuschenko, N. G. Spitsina, M. M. Triebel, and E. L. Frankevich, “On the role of magnetic field spin effect in photoconductivity of composite films of MEH-PPV and nanosized particles of PbS”, J. Lumin. 112, 368 (2005).
    N. J. Rolfe, M. Heeney, P. B. Wyatt, A. J. Drew, T. Kreouzis, and W. P. Gillin, “Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline)”, Phys. Rev. B 80, 241201R (2009).
    F. J. Wang, H. Ba¨ssler, and Z. V. Vardeny, “Magnetic Field Effects in π-Conjugated Polymer-Fullerene Blends:Evidence for Multiple Components”, Phys. Rev. Lett. 101, 236805 (2008).
    T. D. Nguyen, G. H. Markosian, F. Wang, L. Wojcik, X. G. Li, E. Ehrenfreund, and Z. V. Vardeny, “Isotope effect in spin response of π-conjugated polymer films and devices”, Nat. Mater. 9, 345 (2010).
    Q. Peng, W. Li, S. Zhang, P. Chen, Feng Li, and Y. Ma, “Evidence of the reverse intersystem crossing in intra-molecular charge-transfer fluorescence-based organic light-emitting devices through magneto-electroluminescence measurements”, Adv. Opt. Mater. 1, 362 (2013).
    H. Bouchriha, V. Ern, J. L. Fave, C. Guthmann, M. Schott, “Magnetic field dependence of singlet exciton fission and fluorescence in crystalline tetracene at 300 K”, J. Phys. France 39, 257 (1978).
    H. Liu, W. Y. Jia, Y. Zhang, Q. M. Zhang, Y. L. Lei, C. L. Lu, Y. Z. Ling, Z. H. Xiong, “Tuning magneto-electroluminescence in oranic light emitting diodes by controlling the competition between singlet fission and triplet fusion”, Synth. Met. 198, 6 (2014).
    P. J. Jadhav, A. Mohanty, J. Sussman, J. Lee, and M. A. Baldo, “Singlet Exciton Fission in Nanostructured Organic Solar Cells”, Nano Lett. 11, 1495 (2011).
    T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. V. Voorhis, and M. A. Baldo, “Singlet fission efficiency in tetracene-based organic solar cells”, Appl. Phys. Lett. 104, 193901 (2014).
    C. Y. Cheng, N. Chitraningrum, X. M. Chen, T. C. Wen, and T. F. Guo, “Magnetic field effect of the singlet fission reaction in tetracene-based diodes”, Org. electron. 56, 11 (2018).
    A. Rao, M. W. B. Wilson, J. M. Hodgkiss, S. A. Seifried, H. Bässler, and R. H. Friend, “Exciton Fission and Charge Generation via Triplet Excitons in Pentacene/C60 Bilayers”, J. Am. Chem. Soc. 132, 12698 (2010).
    T. C. Wu, N. J. Thompson, D. N. Congreve, E. Hontz, S. R. Yost, T. V. Voorhis, and M. A. Baldo, “Singlet fission efficiency in tetracene-based organic solar cells”, Appl. Phys. Lett. 104, 193901 (2014).
    W. Holzer, A. Penzkofer, and T. Tsuboi, “Absorption and emission spectroscopic characterization of Ir(ppy)3”, Chem. Phys. 308, 93 (2005).
    A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π–conjugated polymers”, Phys. Rev. Lett. 86, 1358 (2001).
    A. Köhler, and D. Beljonne, “The singlet-triplet exchange energy in conjugated polymers”, Adv. Funct. Mater. 14, 11 (2004).
    A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers”, Phys. Rev. Lett. 93, 066803 (2004).
    M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, and Z. G. Soos, “Excitonic singlet-triplet ratios in molecular and polymeric organic materials”, Phys. Rev. B 68, 075211 (2003).
    W. Helfrich, “Destruction of triplet excitons in anthracene by injected electrons”, Phys. Rev. Lett. 16, 401 (1966).
    M. Wittmer, and I. Z. Gränacher, “Exciton-charge carrier interactions in the electroluminescence of crystalline anthracene”, J. Chem. Phys. 63, 4187 (1975).
    J. Levinson, S. Z. Weisz, A. Cobas, and A. Rolón, “Determination of the triplet exciton-trapped electron interaction rate constant in anthracene crystals”, J. Chem. Phys. 52, 2794 (1970).
    C. J. Brabec, G. Zerza, G. Cerullo, S. D. Silvestri, S. Luzzati, J. C. Hummelen, and S. Sariciftci, “Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time”, Chem. Phys. Lett. 340, 232 (2001).
    F. Millicent, B. Smith, and J. Michl, “Singlet fission”, Chem. Rev. 110, 6891 (2010).
    Y. F. Zhang, and S. R. Forrest, “Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes”, Phys. Rev. Lett. 108, 267404 (2012).
    G. B. Piland, J. J. Burdett, D. Kurunthu, and C. J. Bardeen, “Magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene”, J. Phys. Chem. C 117, 1224 (2013).
    R. E. Merrifield, “Theory of magnetic field effects on the mutual annihilation of triplet excitons”, J. Chem. Phys. 48, 4318 (1968).
    E. C. Greyson, B. R. Stepp, X. D. Chen, A. F. Schwerin, I. Paci, M. B. Smith, A. Akdag, J. C. Johnson, A. J. Nozik, J. Michl, and M. A. Ratner, “Singlet exciton fission for solar cell applications:energy aspects of interchromophore coupling”, J. Phys. Chem. B 114, 14223 (2010).
    J. W. Bai, P. Chen, Y. L. Lei, Y. Zhang, Q. M. Zhang, Z. H. Xiong, and F. Li, “Studying singlet fission and triplet fusion by magneto-electroluminescence method in singlet–triplet energy-resonant organic light-emitting diodes”, Org. Electron 14 169 (2014).
    J. Li, Z. H. Chen, Y. L. Lei, Z. H. Xiong, Y. Zhang, “Competition between singlet
    exciton fission, radiation, and dissociation measured in rubrene-doped amorphous
    films”, Synth. Met. 207, 13 (2015).
    C. A. Nelson, N. R. Monahan, and X. Y. Zhu, “Exceeding the Shockley–Queisser limit in solar energy conversion”, Energy Environ. Sci. 6, 3508 (2013).
    C. W. Chu, Y. Shao, V. Shrotriya, and Y. Yang, “Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions”, Appl. Phys. Lett. 86, 243506 (2005).
    W. S. Huang, Z. R. Xu, B. Hu, T. F. Guo, J. C. A. Huang, and T. C. Wen “Magnetoconductance responses of triplet polaron pair charge reaction In hyperfine coupling regime”, Appl. Phys. Lett. 103, 253304 (2013).
    W. S. Huang, Z. R. Xu, K. C. Chen, T. F. Guo, J. C. A. Huang, and T. C. Wen “Modulations in line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes”, Org. Electron. 15, 3076 (2014).
    S. Sampat, A. D. Mohite, B. Crone, S. Tretiak, A. V. Malko, A. J. Taylor, and D. A. Yarotski, “Tunable charge transfer dynamics at Tetracene/LiF/C60 interfaces”, J. Phys. Chem. C. 119, 1286 (2015).
    P. Chen, Q. Peng, L. Yao, N. Gao, and F. Li, “Identifying the efficient inter-conversion between singlet and triplet charge-transfer states by magneto-electroluminescence study”, Appl. Phys. Lett. 102, 063301 (2013).
    N. J. Thompson, E. Hontz, D. N. Congreve, M. E. Bahlke, S. Reineke, T. V. Voorhis, and M. A. Baldo, “Nanostructured Singlet Fission Photovoltaics Subject to Triplet‐Charge Annihilation”, Adv. Mater. 26, 1366 (2014).
    Y. Krupskaya, I. G. Lezama, and A. F. Morpurgo, “Tuning the Charge Transfer in Fx‐TCNQ/Rubrene Single‐Crystal Interfaces”, Adv. Funct. Mater. 26, 2334 (2014).
    P. B. Deotare, W. Chang, E. Hontz, D. N. Congreve, L. Shi, P. D. Reusswig, B. Modtland, M. E. Bahlke, C. K. Lee, A. P. Willard, V. Bulović, T. Van Voorhis, and M. A. Baldo, “Nanoscale transport of charge-transfer states in organic donor–acceptor blends”, Nat. Commun. 14, 1130 (2015).
    R. Shivanna, S. Shoaee, S. Dimitrov, S. K. Kandappa, S. Rajaram, J. R. Durrant, and K. S. Narayan, “Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor”, Energy Environ. Sci. 7, 435 (2014).
    T. Basel, D. Sun, S. Baniya, R. McLaughlin, H. Choi, O. Kwon, and Z. V. Vardeny, “Magnetic field enhancement of organic light‐emitting diodes based on electron donor–acceptor exciplex”, Adv. Electron. Mater. 2, 1500248 (2015).
    A. H. D. -Wolfman, B. Khachatryan, B. R. Gautam, L. Tzabary, A. Keren, N. Tessler, Z. V. Vardeny, and E. Ehrenfreund, “Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent”, Nat. Commun. 5, 4529 (2014).
    J. Xiang, Y. B. Chen, D. Yuan, W. Y. Jia, Q. M. Zhang, and Z. H. Xiong, “Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices”, Appl. Phys. Lett. 109, 103301 (2016).
    H. Gu, S. Chang1, H. Lu, D. F. Holford, T. Zhang, J. X. Hu, W. P. Gillin, and T. Kreouzis, “Impurity effects on charge transport and magnetoconductance in a single layer poly(3-hexyl-thiophene) device”, Appl. Phys. Lett. 108, 203301 (2016).
    Y. C. Hsiao, T. Wu, M. X. Li, W. Qin, L. Yu, and B. Hu, “ Revealing optically induced dipole-dipole interaction effects on charge dissociation at donor:acceptor interfaces in organic solar cells under device-operating condition”, Nano Energy 26, 595 (2016).

    無法下載圖示 校內:2025-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE