簡易檢索 / 詳目顯示

研究生: 蘇紹鵬
Su, Shao-Peng
論文名稱: 利用地形修正手段抑制液面波動現象之理論研究
Suppression of Forced Surface Waves by Topography Modification
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 77
中文關鍵詞: 外力修正,誤差靈敏度,波動振幅控制
外文關鍵詞: wave amplitude control, input shaping, error sensitivity
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 就物理上而言,線性單色波可透過破壞性干涉作用而被完全地抑制;在作法上我們只需將系統的原始外力拆解成幾個相似但分離的部分外力之疊加即可。同時,藉著調整部分外力之個數、個別強度與相鄰部分外力間距,我們可以進一步減低前述外力修正手段的波動抑制效果對修正參數誤差之靈敏度。
    在本文中我們考慮弱非線性且弱色散參數條件下之理想勢流波動系統。為了避開不必要的複雜度,首先我們利用微擾展開方法將完整勢流理論模型簡化為一描述自由表面變形之強制Korteweg-de Vries (fKdV)模型問題。在fKdV模型問題基礎上,我們利用指數漸近方法計算被流場底部地形所激發之波動振幅,並且據以評估不同外力修正手段之強健性與參數誤差之靈敏度。結果發現,我們在本文中所提出的一套具有低誤差靈敏度特性之外力修正手段不僅在非線性系統中仍能良好運作,且其波動抑制效果與對修正間距參數誤差之容忍度皆比應用於線性波動系統時為佳。
    最後,我們回歸勢流波動系統之完整理論模型,並以指數漸近方法計算弱非線性且弱色散條件下之勢流場與波動振幅,進而驗證了前述正面結論依然適用於較實際之波動系統中。

    On physical grounds, linear monochromatic waves can be completely suppressed through destructive interference: technically, by modifying the original forcing into a superposition of several separated partial forcings having similar shape but differing strengths. Furthermore, the parameter error sensitivity of such input shaping methods can be significantly reduced by manipulating the total number of partial forcings, their individual strengths, and the separation distance between neighboring partial forcings.
    In this thesis, we consider surface waves generated by a uniform potential flow past bottom topography. First, to simplify the analysis, the weakly nonlinear and weakly dispersive parameter regime is considered, and the full potential flow problem is reduced by perturbation expansion to the forced Kortewege-de Vries (fKdV) equation governing the free surface deformation. Based on the fKdV model, techniques of exponential asymptotics are employed to calculate the wave amplitude. The effectiveness and parameter error sensitivity of various input shaping schemes are then compared. As it turns out, an error-insensitive input shaping scheme proposed here not only works well in nonlinear systems, but also appears to be more tolerant of separation distance errors in nonlinear wave systems than in linear systems.
    Encouraged by such exciting positive results, we then return to the full potential flow model, and use exponential asymptotic methods to calculate the wave amplitude in the weakly nonlinear and weakly dispersive parameter regime. Interestingly, qualitatively similar results are obtained, and we conclude that input shaping (topography modification) is an effective means for wave amplitude control.

    摘要…………………………………………………………………i 英文摘要…………………………………………………………...ii 誌謝………………………………………………………………..iii 目錄………………………………………………………………..iv 圖目錄……………………………………………………………..vi 第一章 緒論 §1-1 研究動機與背景.........................................1 §1-2 文獻回顧...............................................1 §1-3 研究目的...............................................6 §1-4 研究方法概述與本文架構.................................7 第二章 勢流模型與線性地形修正理論 §2-1 數學模式...............................................9 §2-2 無因次化之勢流理論模型................................11 §2-3 線性理論..............................................12 §2-4 地形修正基本原理......................................16 第三章 強制KdV模型問題之非線性外力修正理論 §3-1 強制KdV模型問題與線性理論.............................19 §3-2 原始外力 之非線性響應.................................26 §3-3 結果討論..............................................29 §3-4 結論..................................................37 第四章 勢流場之漸近分析 §4-1 直接展開結果..........................................39 §4-2 雙尺度展開結果........................................43 §4-3 級數解................................................46 §4-4 V(K,z)與U(K)之漸近分行為預測..........................49 §4-5 波動振幅常數C之決定...................................52 §4-6 結果討論..............................................55 §4-7 結論..................................................63 第五章 綜合結論與未來展望 §5-1 綜合結論..............................................64 §5-2 未來展望..............................................65 附錄一 f0(x)與f02(x)之Fourier轉換推演........................68 附錄二 V(K,z)、U(K)與E(K)之多層卷積項........................71 參考文獻......................................................75

    [1] P. G. Baines, “Topographic effects in stratified flows,” Cambridge University Press, New York, (1995).

    [2] D. K. Lilly, A severe downslope windstorm and aircraft turbulence induced by a mountain wave, J. Atomos. Sci. 35, 59-77 (1978).

    [3] T. -Y. Wu, Generation of upstream advancing solitons by moving disturbances, J. Fluid Mech. 184 (1987).

    [4] T. R. Akylas, “Nonlinear forced wave phenomena in Nonlinear Wave Interactions in Fluids,” R. W. Miksad, T. R. Akylas, and T. Herbert, eds., ASME, New York (1988).

    [5] H. Segur & M. D. Kruskal, “Nonexistence of small-amplitude breather solutions of theory,” Phys. Rev. Lett. 58, 747-750 (1987).

    [6] M. D. Kruskal & H. Segur, “Asymptotics beyond all order in a model of crystal growth,” Stud. Appl. Math. 85, 129-181(1991).

    [7] H. Segur, S. Tanveer, H. Levine, Eds., “Asymptotics Beyond All Orders,” Plenum (1991).

    [8] J. P. Boyd, “Generalized Solitary Waves and Beyond-All-Orders Asymptotics,” Kluwer (1998).

    [9] T. R. Akylas & T.-S Yang, “On short-scale oscillatory tails of long-wave disturbances,” Stud. Appl. Math. 94, 1-20 (1995).

    [10] T.-S. Yang & T. R. Akylas, “Finite-amplitude effects on steady lee-wave patterns in subcritical stratified flow over topography,” J. Fluid Mech. 308, 147-170 (1996).

    [11] I. G. Currie, Fundamental Mechanics of Fluids, 2nd ed, p.p.48~50.

    [12] J. Kevorkian & J. D. Cole, “Multiple scale and singular perturbation methods,” Springer (1996).

    [13] 梁文龍, “非線性色散波之強度控制,”國立成功大學機械工程學系碩士論文, 中華民國九十年六月。

    [14] T.-S. Yang & W.-L. Liang, “Suppression of nonlinear waves by input shaping,” Wave Motion 37, 101-117 (2002).

    [15] S.-P. Su & T.-S. Yang, “Suppression of forced waves by error- insensitive input shaping,” J. CSME 23, 507-516 (2002).

    [16] E. Palm & A. Foldvik, “Contribution to the theory of two- dimensional mountain waves,” Geofys. Publ. 21(6), 1-30 (1959).

    [17] A. Foldivk, “Two-dimensional mountain waves-a method for the rapid computation of lee wavelengths and vertical velocity,” Q. J. R. Meteorol. Soc. 88, 271-285 (1962).

    [18] O. S. Eiff & P. Bonneton, “Lee-wave breaking over obstacles in stratified flow,” J. Physics 12(5), 1073-1086 (2000).

    [19] W. E. Singhose, “Command generation for flexible system,” Doctoral Dissertation, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (1997).

    [20] R.-F. Yin, K.-S. Chen, T.-S. Yang, and K.-S. Ou, “Vibration reduction of a cantilever beam by input shaping,” Proc. of the 26th conference on the Theoretical and Applied Mechanics, Hu-Wei, Taiwan, R.O.C. (2002).

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE