研究生: |
楊玉章 Yang, Yu-Zhang |
---|---|
論文名稱: |
經驗模態分解應用於表面波譜法之研究 The Application of Empirical Mode Decomposition on the SASW |
指導教授: |
倪勝火
Ni, Sheng-huoo |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 經驗模態分解 、非穩態訊號 、頻散曲線 、非破壞性檢測 |
外文關鍵詞: | EMD, non-steady state signal, non-destructive test, dispersion curve |
相關次數: | 點閱:66 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面波譜法(Spectral Analysis of Surface Wave method, SASW)是將雷利波藉由頻譜分析求得土層剖面剪力波速與剪力模數資料。由於此法進行試驗時僅需將受波器置於測體表面,且對測體之影響屬微小應變(<0.001%),故此試驗屬非破壞檢測範疇,可簡便、快速求取土壤動態參數。
本研究旨在增進表面波譜法的準確性。原始訊號利用非穩態訊號處理技術中的經驗模態分解(The Empirical Mode Decomposition , EMD),將分解後的訊號套至傳統表面波譜法分析步驟中反算評估現地剪力波速。
本研究以黃俊豪(2003)於中部地區之實驗數據,將分析結果與PS logging、黃俊豪(2003)及小波轉換所得之結果做一綜合比較。結果顯示使用EMD有較佳分析結果,也證實非穩態分析方法在表面波試驗上的可行性。
Spectral analysis of surface wave method has been developed to determining the shear wave velocity and shear modulus of soil deposit. All SASW field tests are performed at small strain level(γ<0.001%)with instrumentation placed on the one exposed surface. Thus, SASW itself is a type of nondestructive testing. Using SASW to get soil dynamic parameters is more convenient and much easier.
The purpose of this study is to improve the accuracy of SASW. Original signal is re-analyzed by EMD of non-steady state signal processing. The decomposing signal substituted into the process of conventional SASW can get the wave velocity in situ.
In this study, the data measured from central Taiwan by Huang(2003)is re-analyzed. After comparing with PS logging result, the result obtained from using EMD is better than those of Huang’s result and using wavelet transform.
1. Bolt, B.A., Earthquakes: A Primer. Freeman, W.H. and Company, San Francisco, (1978).
2. Chena, L., Zhub, J., Yanc, X., Song, C., “On arrangement of source and receivers in SASW testing,” Soil Dynamics and Earthquake Engineering, 24, pp. 389 - 396, (2003).
3. Cho, G.C., and Santamarina, J.C., “Unsaturated particulate materials-particle level studies,” ASCE, Geotechnical Journal, Vol. 127, No. 1, (2001).
4. Das, B.M., Principles of Geotechnical Engineering, 5th Ed., BROOKS/COLE Publishing Company, (2001).
5. Das, B.M., Principles of Soil Dynamic, PWS-KENT Publishing Company, Boston, (1993).
6. Dunkin, J.W., “Computation of modal solutions in layered elastic media at high frequencies,” B. S. S. A., Vol. 55, No. 2, pp. 335 - 358, (1965).
7. Gendron, P., “Wavelet based seismic signal estimation, detection and classification via Bayes theorem,” Ph. D. Dissertation, WPI, (1999).
8. Gucunski, N., and Woods, R.D., “Instrumentation for SASW testing,” Recent Advances in Instrumentation, Data Acquisition and Testing in Soil Dynamics, ASCE, Geotechnical Special Publication, No. 29, pp. 1 - 16, (1991).
9. Gucunski, N., and Woods, R.D., “Inversion of Rayleigh wave dispersion curve for SASW test,” Soil Dynamics and Earthquake Engineering, Vol. 1, pp. 127 - 138, (1991).
10. Gucunski, N., and Woods, R.D., “Numerical simulation of the SASW test,” Soil Dynamics and Earthquake Engineering, Vol. 11, No. 4, pp. 213 - 227, (1992).
11. Gucunski, N., Shokouhi, P., “Wavelet transforms in surface wave analysis,” GSP 134 Soil Dynamics Symposium in Honor of Professor Richard D. Woods, (2005).
12. Haskell, N.A., “The distribution of surface waves on multilayered media,” B.S.S.A., Vol. 43, No. 1, pp. 17 - 34, (1953).
13. Helen, D., Harrison, H.D., and Hiltunen, D.R., “Characterization of Karst Terrane via SASW seismic wave method,” Geotechnical Special Publication No. 122, ASCE, pp. 519 - 528, (2003).
14. Joh, S.H., Advances in Interpretation and Analysis Techniques for Spectral-Analysis-of-Surface-Waves Measurement, Ph. D. Dissertation, The Univ. of Texas at Austin, (1996).
15. Kausel, E., and Peek, R., “Dynamic loads in the interior of a layered stratum: an explicit solution,” B.S.S.A., Vol. 72, pp. 1459 - 1508, (1982).
16. Kausel, E., and Roësset, J.M., “Stiffness matrices for layered soils,” B.S.S.A., Vol. 71, No. 6, pp. 1743 - 1761, (1981).
17. Kim, D.S., Park, H.C., “Determination of dispersive phase velocities for SASW method using harmonic wavelet transform,” Soil Dynamics and Earthquake Engineering, 22, pp.675 - 684, (2002).
18. Kim, D.S., Shin, M.K., and Park, H.C., “Evaluation of density in layer compaction using SASQ method,” Soil Dynamics and Earthquake Engineering 21th, Vol. 21, pp. 39 - 46, (2001).
19. MathWorks, Matlab Wavelet Toolbox Manual Version 2.2
20. Nazarian, S., and Stokoe, II, K.H., In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Wave Method (Practical Aspects), Research Report 368-1F, Center for Transportation Research, The Univ. of Texas at Austin, (1985).
21. Nazarian, S., and Stokoe, II, K.H., In Situ Determination of Elastic Moduli of Pavement Systems by Spectral-Analysis-of-Surface-Waves Method (Theoretical Aspects), Research Report 437-2, Center for Transportation Research, The Univ. of Texas at Austin, (1986).
22. Richart, F.E., Jr., J.R., and Woods, R.D., Vibrations of Soils and Foundations, Prentice Hall, Inc., Englewood Cliffs, New Jersey, (1970).
23. Rix, G.J., Experimental Study of Factors Affecting the Spectral-Analysis-of-Surface-Waves Method, Ph. D. Dissertation, The Univ. of Texas at Austin, (1988).
24. Rosenblad, B.L., Rathje, E.M., and Stokoe, II, K.H., Shear Wave Velocity Profiling by SASW Method at Selected Strong-Motion Stations from the 1999 Turkey Earthquake, Final Report to Pacific Earthquake Engineering Research Center, September., (2001).
25. Satoh, T., Poran, C.J., Yamagata, K., and Rodriquez, J.A., “Soil profiling by spectral analysis of surface waves,” Proc. of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, pp. 1429 - 1434, (1991).
26. Stokoe, II, K.H., and Santamarina, J.C., ”Seismic-wave-based testing in geotechnical engineering,” Int. Conf. on Geotechnical and Geological Engineering, GeoEng 2000, Melbourne, Australia, (2001).
27. Stokoe, II, K.H., SASW Tests at SMR Sites in Imperial Valley, LA and Taiwan, Draft, (2003).
28. Thomson, W.T., “Transmission of elastic waves through a stratified solid medium,” Journal of Applied Physics, Vol. 21, pp. 89 - 93, (1950).
29. Tokimatsu, K., “Effect of multiple modes on Rayleigh wave dispersion characteristics,” Journal of Geotechnical Engineering, Vol. 118, No. 10, pp. 1529 - 1543, (1992).
30. 古旭程,「表面波譜法應用於土層動態特性評估之研究」,碩士論文,國立成功大學土木工程研究所(1993)。
31. 左天雄,「連續表面波試驗及反算分析地層剪力波速」,土木技術,第18期,第48-63頁(1999)。
32. 江福壽,「頻散曲線評估土層剪力波速剖面之初步研究」,碩士論文,國立成功大學土木工程研究所(2004)。
33. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,第九期,第5 - 19頁(1985)。
34. 周廷彰,「表面波譜法應用於土石壩體動態參數特性之研究」,博士論文,國立成功大學土木工程研究所(2007)。
35. 周志維,「表面波譜法於評估現地土壤剪力波速之應用研究」,碩士論文,國立成功大學土木工程研究所(2006)。
36. 林進興、蘇百加,「表面波譜法之實務與應用」,地工技術,第86期,第19-28頁(2001)。
37. 倪勝火,「表面波譜法之分析原理與應用」,地工技術,第86期,第5-18頁(2001)。
38. 倪勝火,常正之,「土層中雷利波散射曲線之數值計算模式分析」,中國土木水利工程學刊,第四卷,第一期,第49 - 57頁(1992)。
39. 常正之,「應用雷利波散射曲線反算土層動態參數之研究」,博士論文,國立成功大學土木工程研究所(1993)。
40. 張正宙,「多頻道表面波震測之研究」,碩士論文,國立交通大學土木工程研究所(2002)。
41. 張德文,「表面波譜法檢測層狀地工系統之理論研究」,第六屆路面工程學術研討會,第381 - 402頁(1992)。
42. 陳彥亨,「高低頻法於表面波譜法之應用分析」,碩士論文,國立成功大學土木工程研究所(2005)。
43. 陳素玉,「參數系統識別與希伯特-黃轉換應用於土壤動態特性之評估」,碩士論文,國立成功大學土木工程研究所(2006)。
44. 黃俊豪,「應用表面波譜法調查土層剪力波速之研究」,碩士論文,國立成功大學土木工程研究所(2003)。
45. 楊玉章,張文忠,「應用小波分析之表面波震測法於港區淺層地質探測之研究」,第28屆海洋工程研討會論文集,國立中山大學(2006)。
46. 潘建志,「表面波譜法反算土層剪力波速之探討」,碩士論文,國立成功大學土木工程研究所(2002)。
47. 鄭福和,「波傳矩陣之最佳化基因演算法於頻散曲線反算土層剪力波速之研究」,碩士論文,國立台灣大學土木工程研究所(2000)。
48. 謝志敏,「希爾伯特黃轉換簡介」,http://www.ancad.com.tw/presentation%20files/VisualSignal/%A4@%AF%EB%A9%CA%A4%B6%B2%D0/HHT.pdf