| 研究生: |
施奕羽 Shih, I-Yu |
|---|---|
| 論文名稱: |
使用M5'模式樹為基礎學習小樣本之研究 Using the M5'-based procedure for learning from small samples |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 小樣本學習 、名目屬性 |
| 外文關鍵詞: | small data learning, nominal attributes |
| 相關次數: | 點閱:79 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在真實生活中,很多案例都受限於樣本數的不足,造成資料結構不完整,資訊不明確,使得決策條件受限,因此如何從獲得之少量資料中,發掘有意義的資訊以建立可靠穩定的知識模式,進而獲得有效資訊,在近年來已是重要的議題。本研究基於事前知識,利用M5'模式樹的學習過程,提出一個虛擬樣本產生方法,首先利用M5'對資料分割的過程中,取得屬性的可能值域;再透過事前知識的方式,結合可能性評估機制產生虛擬樣本,本模式亦可同時處理數值與名目屬性。實驗結果顯示,透過此方法產生之虛擬樣本,在加入原小樣本後所建構之預測模式,確實較原小樣本對未知母體的預測誤差與準確率有明顯的改善。
This research aims to develop an effective procedure for leaning more knowledge from small datasets. In most small dataset learning tasks, however, owing to the incomplete data structure, the explicit information for decision makers is limited. The proposed procedure, based on the prior knowledge obtained by the M5’ model tree, generates more training samples to learn more information hidden inside the small datasets. In addition, the performance of five modeling tools, M5’, back-propagation neural network, support vector machine for regression, multiple linear regressions, and C4.5 decision tree is also improved. The proposed procedure can handle both numeric and nominal attributes, while fuzzy theory-based VSG algorithms cannot. Nine public datasets are taken to form six kind learning problems for performance evaluation; in addition, two real cases are taken to compare with Mega-Trend-Diffusion method which is the state of the art virtual sample generation algorithm. All the results show the significant improvements.
Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. (1984). Classification and Regression Trees, Belmont, CA:Wadsworth International Group.
Chaudhuri, P., Huang, M. C., Loh, W. Y., and Rubin, R. (1994). Piecewise-polynomial regression tree, Statistica Sinica, Vol.4, 143-167.
Chao, G. Y., Tsai, T. I., Lu, T. J., Hsu, H. C., Bao, B. Y., and Wu, W. Y., et al. (2011). A new
approach to prediction of radiotherapy of bladder cancer cells in small dataset analysis.Expert Systems with Applications, 38(7), 7963-7969.
Dobra, A., Gehrke. J.E., (2002). SECRET: A Scalable Linear Regression Tree Algorithm, Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 481-487.
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., and Vapnik, V. (1997). Support vector regression machines, in: M. Mozer, M. Jordan, and T. Petsche (Eds.), Advances in Neural Information Processing Systems, vol 9. Cambridge, MA: MIT Press, 1997, pp. 155-161.
Efron, B., Tibshirani, R. J. (1993). An Introduction to the Bootstrap: New York: Chapmen & Hall.
Frank E., Wang Y., Inglis S., Holmes G., and Witten IH (1998). Technical note: Using model trees for classification. Machine Learning, 32, 63-76.
Guo, G. D., Dyer, C. R. (2005). Learning from examples in the small sample case: Face expression recognition.. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 35(3), 477-488.
Hong, T. P., Tseng, L. H., and Chien, B. C. (2010). Mining from incomplete quantitative data by fuzzy rough sets. Expert Systems with Applications, 37(3), 2644-2653.
Huang, C. F., Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35, 137-161.
Huang, C. J., Wang, H. F. (2010). Prediction of the Period of Psychotic Episode in Individual Schizophrenics by Simulation-Data Construction Approach.
Huang, C.F. (1997). Principle of information. Fuzzy Sets and Systems. 91,69-90.
Ivănescu, V. C., Bertrand, J. W. M., Fransoo, J. C., and Kleijnen, J. P. C. (2006). Bootstrapping to solve the limited data problem in production control: an application in batch process industries. Journal of the Operational Research Society, 57(1), 2-9.
Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man and Cybernetics. 23, 665-685.
Jennrich, R. I, Schluchter, M. D. (1986). Unbalanced repeated-measures models with structured covariance matrices. Biometrics, 42, 805-820.
Karalic, A. (1992). Employing linear regression in regression tree leaves, Proceeding of the 10th European Conference on Artificial Intelligence, 440-441.
Kuo, Y., Yang, T., Peters, B. A., and Chang, I. (2007). Simulation metamodel development using uniform design and neural networks for automated material handling systems in semiconductor wafer fabrication. Simulation Modelling Practice and Theory, 15(8), 1002-1015.
Laird, N. M., Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
Lanouette, R., Thibault, J., and Valade, J. L. (1999). Process modeling with neural networks using small experimental datasets. Computers & Chemical Engineering, 23(9), 1167-1176.
Li, D. C., Chen, L. S., and Lin, Y. S. (2003). Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research 41(17), 4011-4024.
Li, D. C., Fang, Y. H., Lai, Y. Y., and Hu, S. C. (2009). Utilization of virtual samples to facilitate cancer identification for DNA microarray data in the early stages of an investigation. Information Sciences, 179(16), 2740-2753.
Li, D. C., Hsu, H. C., Tsai, T. I., Lu, T. J., and Hu, S. C. (2007a). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33 420-424.
Li, D. C., Lin, Y. S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175 413-434.
Li, D. C., Liu, C. W., and Hu, S. C. (2010). A learning method for the class imbalance problem with medical data sets. Computers in Biology and Medicine, 40(5), 509-518.
Li, D. C., Tsai, T. I., and Shi, S. (2009). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: Case study. International Journal of Production Research 19, 51-69.
Li, D. C., Wu, C., and Chen, F. M. (2005). Using Data-fuzzification Technology in Small Data Set Learning to Improve FMS Scheduling Accuracy. International Journal of Advanced Manufacturing Technology 27, 321-328.
Li, D. C., Wu, C., Tsai, T. I., and Chang, F. M. (2006). Using Mega-Fuzzification and Data Trend Estimation in Small Data Set Learning for Early FMS Scheduling Knowledge. Computers & Operations Research 33, 1857-1869.
Li, D. C., Wu, S. S., Tsai, T. I., and Lina, Y. S. (2007b).Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge, Computers and Operations Research, 34, 966-982.
Lin, Y. S. and Li, D. C., 2010. The generalized-trend-diffusion modeling algorithm for small data sets in the early stages of manufacturing systems. European Journal of Operational Research, 207(1), 121-130.
Loh, W.Y. (2002). Regression trees with unbiased variable selection and interaction detection. Statistica Sinica, 12, 361-386.
Niyogi,P., Girosi, F., Tomaso, P. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceeding of the IEEE 275-298.
Oniśko, A., Druzdzel, M. J., and Wasyluk, H. (2001). Learning Bayesian network parameters from small data sets: application of Noisy-OR gates.International Journal of Approximate Reasoning, 27(2), 165-182.
Quinlan, J. R. (1979). “Discovering rules from large collections of examples:a case study.” In Michie, D., editor , Expert System in the Microelectronic Age. Edinburgh Scotland: Edinburgh University Press.
Quinlan, J. R. (1992). Learning with continuous classes. Proceedings of the Australian Joint Conference on Artificial Intelligence, 343-348.
Quinlan, J. R. (1993). “C4.5:Programs for Machine Learning.” San Mateo CA :Morgan Kaufmann.
Roiger, R. J., Geatz, M. W. (2003). Data Mining:A Tutorial-Based Primer. New York:Addison Wesley.
Thomas, M., Kanstein, A., and Goser, K. (1997). Rare fault detection by possibilistic reasoning. Computational Intelligence - Theory and Applications, 1226, 294-298.
Tsai, T. I. and Li, D. C. , 2008. Approximate modeling for high order non.-linear functions using small sample sets. Expert Systems with Applications, 34(1), 564-569.
Vapnik, V. N. (2000). The Nature of Statistical Learning Theory, Springer-Verlag, New York.
Wang, H. F., Huang, C. J. (2008). Data construction method for the analysis of the spatial distribution of disastrous earthquakes in Taiwan. 189~212.
Wang, Y., Witten, I.H. (1997). Inducing model trees for continuous classes, Proceedings of poster papers of the 9th European Conference on Machine Learning.
Witten, I. H., Frank, E. (2005). Data Mining:Practical Machine Learning Tools and Techniques (2nd ed.). San Francisco:Morgan Kaufmann.
Wolpert, D. H. (1992). STACKED GENERALIZATION. Neural Networks, 5(2), 241-259.
Yen, S. M. F., Hsu, Y. L. (2010). Profitability of technical analysis in financial and commodity futures markets - A reality check. Decision Support Systems, 50(1), 128 139.