簡易檢索 / 詳目顯示

研究生: 蔡侑霖
Tsai, Yu-Lin
論文名稱: 在冷銣原子中實現基於雙級聯四波混頻的通訊光子轉頻
Realization of Telecom Photon Frequency Conversion Based on Double-Cascade Four-Wave Mixing in Cold Rubidium Atoms
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 59
中文關鍵詞: 電磁波誘發透明雙階梯型四波混頻量子轉頻
外文關鍵詞: EIT, double-cascade four-wave mixing, frequency conversion
相關次數: 點閱:71下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過使用雙級聯四波混頻系統,我們成功在冷原子係綜中實現了將光子頻率從近紅外光波段(795 nm)轉換至通訊光波段(1367 nm)。我們還比較了在多重和單一賽曼態條件下的雙級聯四波混頻差異。目前,在多重和單一賽曼態下,我們分別觀察到最大的頻率轉換效率分別為20%和24%,這與理論預測有所偏差。此外,由於我們在實驗中所選用的單一賽曼態具有循環躍遷的特性,相對於多重賽曼態,我們能夠在單一賽曼態中觀察到轉頻光脈衝呈現出的慢光效應。

    Using a double-cascade four-wave mixing system, we successfully achieved the conversion of photon frequency from the near-infrared wavelength range (795 nm) to the telecom wavelength range (1367 nm) within a cold atomic ensemble. We also compared the differences in double-cascade four-wave mixing under conditions of multiple and single Zeeman states. Currently, in both multiple and single Zeeman states, we have observed maximum frequency conversion efficiencies of 20% and 24%, respectively, which deviate slightly from theoretical predictions. Additionally, due to the cycling transition characteristic present in the single Zeeman state we employed in the experiment, relative to the multiple Zeeman state, we are able to observe the slow light effect of the converted light pulse within the single Zeeman state.

    摘要 i Abstract ii 誌謝 viii 目錄 ix 表格 xi 圖片 xii 第 1 章. 緒論 1 1.1 簡介 1 1.2 動機 1 第 2 章. 理論 3 2.1 二能階 3 2.1.1 光學布拉赫方程式 (optical Bloch equations, OBE) 3 2.1.2 馬克士威-薛丁格方程式 (Maxwell-Schrödinger equations, MSE) 4 2.1.3 二能階 6 2.2 三能階電磁波誘發透明 11 2.2.1 Λ-type 電磁波誘發透明 11 2.2.2 V-type 電磁波誘發透明 16 2.2.3 Cascade-type 電磁波誘發透明 17 2.3 雙階梯型四波混頻 21 2.3.1 相位不匹配 24 第 3 章. 實驗 25 3.1 鐳射穩頻 25 3.1.1 飽和吸收光譜 25 3.1.2 微分光譜 26 3.2 冷原子 27 3.2.1 磁光陷阱 27 3.3 Λ-type 電磁波誘發透明能階選擇 30 3.4 雙階梯型四波混頻數值模擬與能階選擇 31 3.4.1 雙階梯型四波混頻多重賽曼態能階選擇 31 3.4.2 雙階梯型四波混頻單一賽曼態能階選擇 36 3.5 實驗方法 38 3.5.1 Λ-type 電磁波誘發透明光路架設及時序 39 3.5.2 雙階梯型四波混頻光路架設及時序 42 3.5.3 雙階梯型四波混頻引導光與光路效率 48 第 4 章. 結果與討論 50 4.1 雙階梯型多重賽曼態四波混頻 50 4.2 雙階梯型單一賽曼態四波混頻 53 第 5 章. 結論與未來工作 57 參考文獻 58

    [1] C.-T. Claude and G.-O. David. Advances in Atomic Physics. WORLD SCIENTIFIC, (2011).
    [2] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor- mation: 10th Anniversary Edition. Cambridge University Press, (2010).
    [3] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden. A photonic quantum information interface. Nature, 437(7055):116–120, (2005).
    [4] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature Physics, 6(11):894–899, (2010).
    [5] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich. Quantum telecommunication based on atomic cascade transitions. Phys. Rev. Lett., 96:093604, (2006).
    [6] H. Kang, G. Hernandez, and Y. Zhu. Resonant four-wave mixing with slow light. Phys. Rev. A, 70:061804, (2004).
    [7] S.-B. Zheng. Quantum logic gates for two atoms with a single resonant interaction. Phys. Rev. A, 71:062335, (2005).
    [8] E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini. Tele- portation of a vacuum–one-photon qubit. Phys. Rev. Lett., 88:070402, (2002).
    [9] N. Yoran and B. Reznik. Deterministic linear optics quantum computation with single photon qubits. Phys. Rev. Lett., 91:037903, (2003).
    [10] Z. Zhao, A.-N. Zhang, Y.-A. Chen, H. Zhang, J.-F. Du, T. Yang, and J.-W. Pan. Experimental demonstration ofa nondestructive controlled-not quantum gate for two independent photon qubits. Phys. Rev. Lett., 94:030501, (2005).
    [11] M. G. Raymer and K. Srinivasan. Manipulating the color and shape of single photons. Physics Today, 65(11):32–37, (2012).
    [12] J. Huang and P. Kumar. Observation ofquantum frequency conversion. Phys. Rev. Lett., 68:2153–2156, (1992).
    [13] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich. Long-lived quantum memory. Nature Physics, 5(2):100–104, (2009).
    [14] R. T. Willis, F. E. Becerra L. A. Orozco, and S. L. Rolston. Four-wave mixing in the diamond configuration in an atomic vapor. Phys. Rev. A, 79:033814, (2009).
    [15] P. Kumar. Quantum frequency conversion. Optics Letters, 15:1476–1478, (1990).
    [16] F. Steinlechner, N. Hermosa, V. Pruneri, and J. P. Torres. Frequency conversion of structured light. Scientific Reports, 6(1):21390, (2016).
    [17] G. Morigi, S. F.-Arnold, and G.-L. Oppo. Phase-dependent inter- action in a four-level atomic configuration. Phys. Rev. A, 66:053409, (2002).
    [18] C.-H. Chen. Efficient Telecom Photon Conversion Based on Double-Casacde Transitions. Master Thesis, NCKU, (2021).
    [19] T.-N. Wang. Quasi-phase-matching slow light propagation in efficient four-wave mixing media. Master Thesis, NCKU, (2020).
    [20] Y.-L. Syue. Electromagnetically induced transparency in cascade transitions of cold rubidium atoms. Master Thesis, NCKU, (2022).
    [21] J.-T. Xiao. High-efficiency backward four-wave mixing by quantum interference. Master Thesis, NCKU, (2017).
    [22] C.-Y. Cheng. Quantum Frequency Conversion Based on Resonant-Type Quantum Nonlinear Optics. Doctor Thesis, NCKU, (2021).
    [23] C.-Y. Cheng, J.-J. Lee, Z.-Y. Liu, J.-S. Shiu, and Y.-F. Chen. Quantum frequency conversion based on resonant four-wave mixing. Phys. Rev. A, 103:023711, (2021).
    [24] Z.-Y. Liu, J.-T. Xiao, and J.-K. Lin, et al. High-efficiency backward four-wave mixing by quantum interference. Sci Rep 7, 15796 (2017).
    [25] M.-J. Lin. Generation OfCorrelated Paired Photons Using Doubled-Λ Four-wave Mixing. Master Thesis, NCKU, (2021).
    [26] Z.-Y. Liu. Optical Quantum Manipulations and Applications Based on Electromagnetically Induced Transparency. Doctor Thesis, NCKU, (2020).

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE