簡易檢索 / 詳目顯示

研究生: 何思郁
Ho, Szu-Yu
論文名稱: 用密度泛函理論計算研究螢火蟲螢光素及其衍生物化學放光
Theoritical Studies of Chemiluminescence about Firefly Luciferin and Its’ Derivatives by Density Functional Theory Calculations
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 48
中文關鍵詞: 密度泛函理論計算螢火蟲螢光素天然鍵性軌域分析質子親和力軌域作用誘導效應螢火蟲螢光素及其衍生物軌域推升作用放光溶劑效應
外文關鍵詞: DFT, TD-DFT, firefly luciferin, QD, NBO, NLMO, natural localized molecular orbital, proton affinity, phenol, phenolate, enol, inductive effect, oxyluciferin, solvent effect, keto-1 form, enolate form, BRET, bioluminescence resonance energy transfer, TBI, through bond interaction
相關次數: 點閱:132下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢火蟲螢光素研究論文於1991年發表,至今每年發表大約30-40篇以上;密度泛函理論計算於2003年加入這個領域,亦有逐年增加的趨勢。

    本文利用TD-DFT密度泛函理論(time-dependent density functional theory)與軌域作用探討螢火蟲螢光素的放光波長變化,企圖找出螢火蟲螢光素在溶液中的六種結構1放光波長變化的原因。

    依據螢火蟲螢光素結構,衍生的類似物近期研究論文頗多,但大多為實驗合成,增加其共軛系統使其扮演BRET(bioluminescence resonance energy transfer) donor,供應能量給QD(quantum-dot)2。本文以理論計算預測放光,自行設計可扮演BRET角色的螢火蟲螢光素,構形較簡單且放光能符合BRET所需要的放光波長範圍(480-520nm)。設計的放光物可作為BRET 應用領域的候選。

    針對Promega公司廣告上提及5’F取代螢火蟲螢光素在低pH值環境下,放光比螢火蟲螢光素(luciferin)穩定,針對此實驗結果,利用軌域作用關係與質子親和力解釋。

    The research efforts performed on the area of Firefly Luciferin (FL) can be manifested by 40-120 papers every year since 1991. Theoretical studies employing density functional theory (DFT) calculations have first been reported in 2003. Investigations of the chemical or biochemical photophysics of FL by quantum mechanical techniques are growing remarkably to date.

    In this research, we have employed DFT/TD-DFT (time-dependent density functional theory) calculations to study luminescent properties of Firefly Luciferins. It is our immediate goal to get orbital-based explanations for the published luminescent energies covered by the six different structures of Oxyluciferin in solvents. This is accomplished by analysis of DFT wavefunctions.

    Designing of new FL deivatives has also attracted numerous interests focused on synthetic work by expanding the conjugated system. These new FLs were used as BRET (bioluminescence resonance energy transfer) donors, which supplied energy to QD (quantum-dot). Based on the orbital interaction approach, we have then designed some promosing FL derivatives showing emitting lights in the desired blue-green region (λlum=480-520nm). Such emitters are expected to be promising candidates for applications in the BRET field.

    Promega Company announced a useful product, 5’-fluoroluciferin, which emitted light more stable than the parent luciferin in the low pH environments. We have also accounted for this phenomenon in terms of orbital interactions and proton affinity.

    目錄 摘要... I Abstract... II 誌謝... III 重要的英文縮寫... VIII 第一章 緒論... 1 1-1 螢火蟲背景簡介... 1 1-2文獻回顧... 1 1-3研究目的... 2 1-3-1 Luciferin在solvent中6種結構-放光變化與計算方法探討... 2 1-3-2 相同位置6’C-接不同取代基... 2 1-3-3自行設計分子... 2 1-3-4 不同位置相同取代基F... 3 1-3-5 本研究主軸... 3 第二章 理論背景... 4 2-1 軌域作用... 4 2-1-1誘導效應大於π孤對電子對軌域的推升效應—軌域能量下降... 4 2-1-2 誘導效應小於π孤對電子對軌域的推升效應—軌域能量上升... 4 2-1-3以同一位置不同取代基為例... 5 2-2 六種螢火蟲螢光素放光波長變化... 5 2-2-1 Oxyluciferin在溶劑中的六種結構與其放光變化... 5 2-2-2計算方法探討DFT /SAC-CI...5 2-3 螢火蟲螢光素相同位置6’C不同取代基...6 2-3-1 O-、OH... 6 2-3-2 F、OH、NR2 ...6 2-3-3 OH、OMe;NR2(文獻2)...6 2-3-4 能量排序與π電子軌域作用關係(舉例)—6’C接NH2、OH、H... 7 2-4 自行設計分子... 7 2-5 不同位置相同取代基F... 8 第三章 計算原理與方法... 9 3-1 Density Functional Theory密度泛函理論方法... 9 3-2基底函數... 9 3-3計算模型如何挑選... 9 3-4 放光波長的預估... 10 第四章 結果與討論... 11 4-0 計算模型的挑選... 11 4-0-1各計算模型之能量與化合物命名對照... 11 4-0-2計算模型... 12 4-0-3選擇基底與計算所用方法比較... 13 4-1六種螢火蟲螢光素放光波長變化探討...14 4-2 相同位置6’C接不同取代基探討... 15 4-2-1 6’C接不同取代基—π電子對軌域推升作用...15 4-2-2 6’C接不同取代基-TBI現象... 16 4-3 自行設計分子探討...18 4-4 不同位置相同取代基F...19 4-4-1 F取代於4’,5’,7’C上 keto-1 form ...20 4-4-2 F取代於4’,5’,7’C上 enolate-Oxy2- form...20 4-4-3氣態分子暨溶劑效應模擬與實驗值對照... 21 4-4-4 5’-fluoroluciferin能在低pH值放光較Luciferin穩定... 22 4-4-5 5’F-Oxyluciferin形成氫鍵與未形成氫鍵化合物軌域探討.. 23 4-4-6 5’F-Oxyluciferin形成氫鍵與未形成氫鍵化合物質子親和力 25 參考文獻...46 圖目錄 圖1螢火蟲的放光圖 27 圖2 LUCIFERIN-QUANTUM DOT SENSORS作用機制圖 27 圖3 氟乙烯作用圖 27 圖4 F取代軌域作用圖(氟乙烯) 28 圖5 OXYLUCIFERIN在溶液中的六種結構 28 圖6 OXYLUCIFERIN放光波長分佈圖 28 圖7 6’C接不同取代基—能帶變化 29 圖8 OXYLUCIFERIN六種結構放光能帶 29 圖9 7’F Π軌域電子與環上的Π軌域電子HOMO軌域作用圖 30 圖10 7’F Π軌域電子與環上的Π軌域電子LUMO軌域作用圖 30 圖11本實驗KETO-1 FORM與5’F KETO-1 FORM (GAS、WATER)放光波長圖 30 圖12本實驗ENOLATE(-2) FORM與5’F ENOLATE(-2) FORM (GAS、WATER)放光波長圖 31 圖13 5’-FLUORO KETO-1 FORM OXYLUCIFERIN 5’F與環上C作用圖 31 圖14 5’-FLUORO KETO-1 FORM OXYLUCIFERIN O與環上C作用圖 32 表目錄 表 1 計算方法探討DFT/SAC-CI 33 表 2 本實驗計算值與引用文獻計算值比較表 33 表 3 本實驗計算值與文獻實驗值比較表 34 表 4 文獻與本實驗計算值差異列表 34 表 5 OXYLUCIFERIN六種結構波長位移整理 35 表 6 PHENOL轉變為PHENOLATE放光波長傾向紅位移—特例) 35 表 7 C6’接不同取代基—取代基孤對電子 35 表 8 設計分子 40 表 9 設計分子能階能量變化 41 表 10不同位置氟取代螢火蟲螢光素計算整理 42 表 11 螢火蟲螢光素原子參與百分比分析 42 表 12 FLUORO-OXYL2-(ENOLATE FORM) 能帶與放光 42 表 13 FLUORO-OXYL2-(ENOLATE FORM) LCAO分析---HOMO、LUMO原子百分比 42 表 14 本實驗KETO-1 FORM與實驗值E.S 1比較(含溶劑效應) 43 表 15 本實驗ENOLATE(-2) FORM與實驗值E.S 1比較 (含溶劑效應) 43 表 16 5’-FLUORO KETO-1 FORM OXYLUCIFERIN形成氫鍵 44 表 17 5’-FLUORO KETO-1 FORM OXYLUCIFERIN未形成氫鍵180度 44 表 18 5’-FLUORO KETO-1 FORM OXYLUCIFERIN形成氫鍵,NLMO分析氟軌域混入氧 45 表 19 OXYLUCIFERIN KETO-1 FORM質子親和力 45 表 20 5’F-OXYLUCIFERIN KETO-1 FORM質子親和力 45

    參考文獻
    1. Naumov, P.; Kochunnoonny, M., Spectral-Structural Effects of the Keto-Enol-Enolate and Phenol-Phenolate Equilibria of Oxyluciferin. Journal of the American Chemical Society 2010, 132 (33), 11566-11579.
    2. Takakura, H.; Sasakura, K.; Ueno, T.; Urano, Y.; Terai, T.; Hanaoka, K.; Tsuboi, T.; Nagano, T., Development of Luciferin Analogues Bearing an Amino Group and Their Application as BRET Donors. Chemistry – An Asian Journal 2010, 5 (9), 2053-2061.
    3. (a) Branchini, B. R.; Southworth, T. L.; Murtiashaw, M. H.; Boije, H.; Fleet, S. E., A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry 2003, 42, 10429-10436; (b) Branchini, B. R., Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Biochemistry 1999, 38, 13223-13230.
    4. Nakatani, N.; Hasegawa, J.-y.; Nakatsuji, H., Red Light in Chemiluminescence and Yellow-Green Light in Bioluminescence:  Color-Tuning Mechanism of Firefly, Photinus pyralis, Studied by the Symmetry-Adapted Cluster−Configuration Interaction Method. Journal of the American Chemical Society 2007, 129 (28), 8756-8765.
    5. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews 2008, 60 (11), 1226-1240.
    6. (a) Tsuchiya, Y.; Nakajima, M.; Takagi, S.; Taniya, T.; Yokoi, T., MicroRNA Regulates the Expression of Human Cytochrome P450 1B1. Cancer Research 2006, 66 (18), 9090-9098; (b) Ray, P.; Tsien, R.; Gambhir, S. S., Construction and Validation of Improved Triple Fusion Reporter Gene Vectors for Molecular Imaging of Living Subjects. Cancer Research 2007, 67 (7), 3085-3093; (c) Theodossiou, T.; Hothersall, J. S.; Woods, E. A.; Okkenhaug, K.; Jacobson, J.; MacRobert, A. J., Firefly Luciferin-activated Rose Bengal. Cancer Research 2003, 63 (8), 1818-1821.
    7. Van de Bittner, G. C.; Dubikovskaya, E. A.; Bertozzi, C. R.; Chang, C. J., In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proceedings of the National Academy of Sciences 2010, 107 (50), 21316-21321.
    8. Nakatani, N.; Hasegawa, J.; Nakatsuji, H., Artificial color tuning of firefly luminescence: Theoretical mutation by tuning electrostatic interactions between protein and luciferin. Chemical Physics Letters 2009, 469 (1-3), 191-194.
    9. Viviani, V. R., The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences 2002, 59 (11), 1833-1850.
    10. B. W. Rice; Cable, M. D.; Nelson, M. B., In vivo imaging of light-emitting probes. Journal of Biomedical Optics 2001, 6 (4), 432-440.
    11. Reddy, G. R.; Thompson, W. C.; Miller, S. C., Robust Light Emission from Cyclic Alkylaminoluciferin Substrates for Firefly Luciferase. Journal of the American Chemical Society 2010, 132 (39), 13586-13587.
    12. Hirano, T.; Hasumi, Y.; Ohtsuka, K.; Maki, S.; Niwa, H.; Yamaji, M.; Hashizume, D., Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence. Journal of the American Chemical Society 2009, 131 (6), 2385-2396.
    13. Nakatsu, T.; Ichiyama, S.; Jun Hiratake, A. S., Nobuyuki Kobashi1, Kanzo Sakata3; & Hiroaki Kato1, Structural basis for the spectral difference in
    luciferase bioluminescence. NATURE-LETTERS 2006, 440, 372-376.
    14. Sergey V. Mamaev, A. L. L., Tuncer Arslan, and; Hecht*, S. M., Firefly Luciferase: Alteration of the Color of Emitted Light Resulting from Substitutions at Position 286. J. Am. Chem. Soc. 1996, 118, 7243-7244.
    15. Liu, Y. J.; De Vico, L.; Lindh, R., Ab initio investigation on the chemical origin of the firefly bioluminescence. Journal of Photochemistry and Photobiology a-Chemistry 2008, 194 (2-3), 261-267.
    16. Li, Z. W.; Min, C. G.; Ren, A. M.; Guo, J. F.; Goddard, J. D.; Feng, J. K.; Zuo, L., Theoretical Study of the Relationships between Excited State Geometry Changes and Emission Energies of Oxyluciferin. Bulletin of the Korean Chemical Society 2010, 31 (4), 895-900.
    17. da Silva, L. s. P.; Esteves da Silva, J. C. G., Computational Studies of the Luciferase Light-Emitting Product: Oxyluciferin. Journal of Chemical Theory and Computation 2011, 7 (4), 809-817.
    18. Branchini, B. R.; Murtiashaw, M. H.; Magyar, R. A.; Portier, N. C.; Ruggiero, M. C.; Stroh, J. G., Yellow-Green and Red Firefly Bioluminescence from 5,5-Dimethyloxyluciferin. Journal of the American Chemical Society 2002, 124 (10), 2112-2113.
    19. Naumov, P.; Ozawa, Y.; Ohkubo, K.; Fukuzumi, S., Structure and Spectroscopy of Oxyluciferin, the Light Emitter of the Firefly Bioluminescence. Journal of the American Chemical Society 2009, 131 (32), 11590-11605.
    20. Riahi, S.; Abdolahzadeh, S.; Faridbod, F.; Chaichi, M. J.; Ganjali, M. R.; Norouzi, P., Complexation study of luciferin with metal ions in acetonitrile employing theoretical and experimental methods. Journal of Molecular Liquids 2010, 157 (1), 51-56.
    21. Auld, D. S.; Southall, N. T.; Jadhav, A.; Johnson, R. L.; Diller, D. J.; Simeonov, A.; Austin, C. P.; Inglese, J., Characterization of Chemical Libraries for Luciferase Inhibitory Activity. Journal of Medicinal Chemistry 2008, 51 (8), 2372-2386.
    22. Lee, S.-Y.; Choe, Y. S.; Lee, K.-H.; Lee, J.; Choi, Y.; Kim, B.-T., Synthesis of 7'-[123I]iodo-d-luciferin for in vivo studies of firefly luciferase gene expression. Bioorganic & Medicinal Chemistry Letters 2004, 14 (5), 1161-1163.
    23. Matsumoto, M., Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2004, 5 (1), 27-53.
    24. Liu, F.; Liu, Y.; De Vico, L.; Lindh, R., Theoretical Study of the Chemiluminescent Decomposition of Dioxetanone. Journal of the American Chemical Society 2009, 131 (17), 6181-6188.
    25. Valley,M.P. ;Hawkins,Erika M. ;Scurria,Mike A. ;James Unch, Troy Good, Dave Good, Laurent Bernad, Dieter H. Klaubert, and Keith V. Wood Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711-5399 USA
    5’-Fluoroluciferin is a Novel Luciferin Analog that Improves Luciferase Reagent Technology
    Ultra-Glo(Promega公司產品、台灣勁因科技公司),使用取代基F於Luc 5’位置
    http://www.promega.com/resources/scientific_posters/posters/5-fluoroluciferin-is-a-novel-luciferin-analog-that-improves-luciferase-reagent-technology/
    http://www.genelabs.com.tw/TI/GL%20Paper_001_20100419c.pdf

    下載圖示 校內:2012-08-10公開
    校外:2013-08-10公開
    QR CODE