| 研究生: |
何思郁 Ho, Szu-Yu |
|---|---|
| 論文名稱: |
用密度泛函理論計算研究螢火蟲螢光素及其衍生物化學放光 Theoritical Studies of Chemiluminescence about Firefly Luciferin and Its’ Derivatives by Density Functional Theory Calculations |
| 指導教授: |
王小萍
Wang, Shao-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 密度泛函理論計算 、螢火蟲螢光素 、天然鍵性軌域分析 、質子親和力 、軌域作用 、誘導效應 、螢火蟲螢光素及其衍生物 、軌域推升作用 、放光 、溶劑效應 |
| 外文關鍵詞: | DFT, TD-DFT, firefly luciferin, QD, NBO, NLMO, natural localized molecular orbital, proton affinity, phenol, phenolate, enol, inductive effect, oxyluciferin, solvent effect, keto-1 form, enolate form, BRET, bioluminescence resonance energy transfer, TBI, through bond interaction |
| 相關次數: | 點閱:132 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢火蟲螢光素研究論文於1991年發表,至今每年發表大約30-40篇以上;密度泛函理論計算於2003年加入這個領域,亦有逐年增加的趨勢。
本文利用TD-DFT密度泛函理論(time-dependent density functional theory)與軌域作用探討螢火蟲螢光素的放光波長變化,企圖找出螢火蟲螢光素在溶液中的六種結構1放光波長變化的原因。
依據螢火蟲螢光素結構,衍生的類似物近期研究論文頗多,但大多為實驗合成,增加其共軛系統使其扮演BRET(bioluminescence resonance energy transfer) donor,供應能量給QD(quantum-dot)2。本文以理論計算預測放光,自行設計可扮演BRET角色的螢火蟲螢光素,構形較簡單且放光能符合BRET所需要的放光波長範圍(480-520nm)。設計的放光物可作為BRET 應用領域的候選。
針對Promega公司廣告上提及5’F取代螢火蟲螢光素在低pH值環境下,放光比螢火蟲螢光素(luciferin)穩定,針對此實驗結果,利用軌域作用關係與質子親和力解釋。
The research efforts performed on the area of Firefly Luciferin (FL) can be manifested by 40-120 papers every year since 1991. Theoretical studies employing density functional theory (DFT) calculations have first been reported in 2003. Investigations of the chemical or biochemical photophysics of FL by quantum mechanical techniques are growing remarkably to date.
In this research, we have employed DFT/TD-DFT (time-dependent density functional theory) calculations to study luminescent properties of Firefly Luciferins. It is our immediate goal to get orbital-based explanations for the published luminescent energies covered by the six different structures of Oxyluciferin in solvents. This is accomplished by analysis of DFT wavefunctions.
Designing of new FL deivatives has also attracted numerous interests focused on synthetic work by expanding the conjugated system. These new FLs were used as BRET (bioluminescence resonance energy transfer) donors, which supplied energy to QD (quantum-dot). Based on the orbital interaction approach, we have then designed some promosing FL derivatives showing emitting lights in the desired blue-green region (λlum=480-520nm). Such emitters are expected to be promising candidates for applications in the BRET field.
Promega Company announced a useful product, 5’-fluoroluciferin, which emitted light more stable than the parent luciferin in the low pH environments. We have also accounted for this phenomenon in terms of orbital interactions and proton affinity.
參考文獻
1. Naumov, P.; Kochunnoonny, M., Spectral-Structural Effects of the Keto-Enol-Enolate and Phenol-Phenolate Equilibria of Oxyluciferin. Journal of the American Chemical Society 2010, 132 (33), 11566-11579.
2. Takakura, H.; Sasakura, K.; Ueno, T.; Urano, Y.; Terai, T.; Hanaoka, K.; Tsuboi, T.; Nagano, T., Development of Luciferin Analogues Bearing an Amino Group and Their Application as BRET Donors. Chemistry – An Asian Journal 2010, 5 (9), 2053-2061.
3. (a) Branchini, B. R.; Southworth, T. L.; Murtiashaw, M. H.; Boije, H.; Fleet, S. E., A mutagenesis study of the putative luciferin binding site residues of firefly luciferase. Biochemistry 2003, 42, 10429-10436; (b) Branchini, B. R., Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Biochemistry 1999, 38, 13223-13230.
4. Nakatani, N.; Hasegawa, J.-y.; Nakatsuji, H., Red Light in Chemiluminescence and Yellow-Green Light in Bioluminescence: Color-Tuning Mechanism of Firefly, Photinus pyralis, Studied by the Symmetry-Adapted Cluster−Configuration Interaction Method. Journal of the American Chemical Society 2007, 129 (28), 8756-8765.
5. Smith, A. M.; Duan, H.; Mohs, A. M.; Nie, S., Bioconjugated quantum dots for in vivo molecular and cellular imaging. Advanced Drug Delivery Reviews 2008, 60 (11), 1226-1240.
6. (a) Tsuchiya, Y.; Nakajima, M.; Takagi, S.; Taniya, T.; Yokoi, T., MicroRNA Regulates the Expression of Human Cytochrome P450 1B1. Cancer Research 2006, 66 (18), 9090-9098; (b) Ray, P.; Tsien, R.; Gambhir, S. S., Construction and Validation of Improved Triple Fusion Reporter Gene Vectors for Molecular Imaging of Living Subjects. Cancer Research 2007, 67 (7), 3085-3093; (c) Theodossiou, T.; Hothersall, J. S.; Woods, E. A.; Okkenhaug, K.; Jacobson, J.; MacRobert, A. J., Firefly Luciferin-activated Rose Bengal. Cancer Research 2003, 63 (8), 1818-1821.
7. Van de Bittner, G. C.; Dubikovskaya, E. A.; Bertozzi, C. R.; Chang, C. J., In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proceedings of the National Academy of Sciences 2010, 107 (50), 21316-21321.
8. Nakatani, N.; Hasegawa, J.; Nakatsuji, H., Artificial color tuning of firefly luminescence: Theoretical mutation by tuning electrostatic interactions between protein and luciferin. Chemical Physics Letters 2009, 469 (1-3), 191-194.
9. Viviani, V. R., The origin, diversity, and structure function relationships of insect luciferases. Cellular and Molecular Life Sciences 2002, 59 (11), 1833-1850.
10. B. W. Rice; Cable, M. D.; Nelson, M. B., In vivo imaging of light-emitting probes. Journal of Biomedical Optics 2001, 6 (4), 432-440.
11. Reddy, G. R.; Thompson, W. C.; Miller, S. C., Robust Light Emission from Cyclic Alkylaminoluciferin Substrates for Firefly Luciferase. Journal of the American Chemical Society 2010, 132 (39), 13586-13587.
12. Hirano, T.; Hasumi, Y.; Ohtsuka, K.; Maki, S.; Niwa, H.; Yamaji, M.; Hashizume, D., Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence. Journal of the American Chemical Society 2009, 131 (6), 2385-2396.
13. Nakatsu, T.; Ichiyama, S.; Jun Hiratake, A. S., Nobuyuki Kobashi1, Kanzo Sakata3; & Hiroaki Kato1, Structural basis for the spectral difference in
luciferase bioluminescence. NATURE-LETTERS 2006, 440, 372-376.
14. Sergey V. Mamaev, A. L. L., Tuncer Arslan, and; Hecht*, S. M., Firefly Luciferase: Alteration of the Color of Emitted Light Resulting from Substitutions at Position 286. J. Am. Chem. Soc. 1996, 118, 7243-7244.
15. Liu, Y. J.; De Vico, L.; Lindh, R., Ab initio investigation on the chemical origin of the firefly bioluminescence. Journal of Photochemistry and Photobiology a-Chemistry 2008, 194 (2-3), 261-267.
16. Li, Z. W.; Min, C. G.; Ren, A. M.; Guo, J. F.; Goddard, J. D.; Feng, J. K.; Zuo, L., Theoretical Study of the Relationships between Excited State Geometry Changes and Emission Energies of Oxyluciferin. Bulletin of the Korean Chemical Society 2010, 31 (4), 895-900.
17. da Silva, L. s. P.; Esteves da Silva, J. C. G., Computational Studies of the Luciferase Light-Emitting Product: Oxyluciferin. Journal of Chemical Theory and Computation 2011, 7 (4), 809-817.
18. Branchini, B. R.; Murtiashaw, M. H.; Magyar, R. A.; Portier, N. C.; Ruggiero, M. C.; Stroh, J. G., Yellow-Green and Red Firefly Bioluminescence from 5,5-Dimethyloxyluciferin. Journal of the American Chemical Society 2002, 124 (10), 2112-2113.
19. Naumov, P.; Ozawa, Y.; Ohkubo, K.; Fukuzumi, S., Structure and Spectroscopy of Oxyluciferin, the Light Emitter of the Firefly Bioluminescence. Journal of the American Chemical Society 2009, 131 (32), 11590-11605.
20. Riahi, S.; Abdolahzadeh, S.; Faridbod, F.; Chaichi, M. J.; Ganjali, M. R.; Norouzi, P., Complexation study of luciferin with metal ions in acetonitrile employing theoretical and experimental methods. Journal of Molecular Liquids 2010, 157 (1), 51-56.
21. Auld, D. S.; Southall, N. T.; Jadhav, A.; Johnson, R. L.; Diller, D. J.; Simeonov, A.; Austin, C. P.; Inglese, J., Characterization of Chemical Libraries for Luciferase Inhibitory Activity. Journal of Medicinal Chemistry 2008, 51 (8), 2372-2386.
22. Lee, S.-Y.; Choe, Y. S.; Lee, K.-H.; Lee, J.; Choi, Y.; Kim, B.-T., Synthesis of 7'-[123I]iodo-d-luciferin for in vivo studies of firefly luciferase gene expression. Bioorganic & Medicinal Chemistry Letters 2004, 14 (5), 1161-1163.
23. Matsumoto, M., Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2004, 5 (1), 27-53.
24. Liu, F.; Liu, Y.; De Vico, L.; Lindh, R., Theoretical Study of the Chemiluminescent Decomposition of Dioxetanone. Journal of the American Chemical Society 2009, 131 (17), 6181-6188.
25. Valley,M.P. ;Hawkins,Erika M. ;Scurria,Mike A. ;James Unch, Troy Good, Dave Good, Laurent Bernad, Dieter H. Klaubert, and Keith V. Wood Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711-5399 USA
5’-Fluoroluciferin is a Novel Luciferin Analog that Improves Luciferase Reagent Technology
Ultra-Glo(Promega公司產品、台灣勁因科技公司),使用取代基F於Luc 5’位置
http://www.promega.com/resources/scientific_posters/posters/5-fluoroluciferin-is-a-novel-luciferin-analog-that-improves-luciferase-reagent-technology/
http://www.genelabs.com.tw/TI/GL%20Paper_001_20100419c.pdf