| 研究生: |
黃鐙河 Huang, Doan-Ho |
|---|---|
| 論文名稱: |
聚對萘二甲酸乙酯(PEN)之結晶行為及交酯化反應之探討 Crystalline Morphology, Miscibility, and Transesterification of Poly (ethylene-2,6-naphthalate) (PEN) and Its Blends with Other Polyesters. |
| 指導教授: |
吳逸謨
Woo, Eamor-M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 交酯化 、結晶行為 、相容性 、核磁共振儀 |
| 外文關鍵詞: | Crystallization, NMR, miscibility, Transesterification |
| 相關次數: | 點閱:88 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩個部分,第一部份主要是在探討Poly(ethylene-2,6-naphthalate) PEN因結晶條件變化,所產生的晶態轉變,利用廣角度X光繞射儀(WAXD)及微分掃描熱卡計(DSC),來深入探討PEN之α-form及β-form晶態與熱處理條件的相關性。經由實驗結果發現熔融溫度(Tmax)對PEN熔融結晶會造成很大的影響。α-form及β-form都共存在所有的Tmax條件下,然而在Tmax=300℃時,β-form晶態的含量是最多的。而由Hoffman-Weeks equation外插平衡熔點,更證實β-form為熱力上較穩定的晶態,α-form為動力上有利的晶態,符合WAXD得到的結果。進一步利用兩步驟結晶,先在較高的結晶溫度(265℃)形成β-form晶核,再迅速降至α及β並存但結晶速率較快的溫度結晶,可以在短時間內得到結晶較完美的純β-form晶態。
第二部分,藉由DSC、偏光顯微鏡(POM)及核磁共振儀(NMR)來探討Poly(ethylene-2,6-naphthalate)/Poly(trimethylene terephthalate) (PEN/PTT)及Poly(ethylene-2,6-naphthalate)/Poly(pentamethylene terephthalate) (PEN/PPT)兩成份摻合系統之相容性、交酯化反應及結晶行為。在此兩個摻合系統中,藉由相型態觀察及熱分析結果發現其皆為相分離系統,經由在高溫(300℃)進行熱處理,會逐漸變為均相。進一步利用NMR觀察反應機制,發現在高溫熱處理會產生交酯化反應,促進摻合系統相型態及結晶行為的變化,故在此將對交酯化反應做深入的探討。此外,作用力參數及結晶動力也是探討的重點。
The melting behavior of poly (ethylene-2,6-naphthalate) (PEN) subjected to crystallize from the melt was investigated by dynamic calorimeter (DSC) and wide-angle X-ray diffraction (WAXD). Furthermore, the effect of the maximum annealing temperature (Tmax) on crystal modification of PEN was discussed in this study. αandβcrystal forms coexisted at all Tmax values investigated here: however, the higherβfraction of PEN was observed at Tmax=300℃. The equilibrium melting temperature (Tm°) of PEN melted at different Tmax values was determined by Hoffman-Weeks extrapolation. The maximum Tm° value was evaluated at Tmax=300℃ due to the higher fraction of the thermodynamic stableβform. PEN first melt crystallized at 265℃ to produceβnuclei, and subsequently quenched to a temperature, which containingαandβforms for PEN directly crystallized ; surprisingly, onlyβform was observed.
Another objective of this study was to investigate the miscibility, crystallization behavior, and transesterification of PEN/ poly (trimethylene terephthalate) (PTT) and PEN/poly (pentamethylene terephthalate) (PPT) by means of DSC, polarized optical microscope (POM), and nuclear magnetic resonance (NMR). PEN/PTT and PEN/PPT blends are immiscible of all compositions. A transesterfication occurred at 300℃ for a period of time for both PEN/PTT and PEN/PPT blends. The intermolecular interaction parameters and crystallization kinetic allow us know that the crystallization behavior of PEN was affected by adding another polymer to PEN.
1. G. Guerra, V. M. Vitagliano and P. Gorradini,
Mcromolecules, 23, 1539 (1990).
2. Y. S. Sun, E. M. Woo, Macromolecules, 32, 7836
(1999).
3. Y. S. Sun, E. M. Woo, J. Polym. Sci. Phys. Ed.,
38, 3210 (2000).
4. R. M. Ho, C. P. Lin and E. M. Woo,
Macromolecules, 33, 6517 (2000).
5. K. Tashiro, Y. Ueno and M. Kobayashi,
Macromolecules, 34, 310 (2001)
6. M. Y. Ju, J. M. Huang and F. C. Chang, Polymer,
43, 2065 (2002).
7. G. Z. Papageorgiou, G. P. Karayannidis, Polymer,
42, 2637 (2001).
8. S. Buchner, D. Wiswe and H. G. Zachmann,
Polymer, 30, 480 (1989).
9. P. J. Makarewice and G. L. Wilkes, J. Appl.
Polym. Sci., 22, 3347 (1978).
10. S. J. Kim, J. Y. Nam, Y. M. Lee and S. S. Im,
Polymer, 40, 5623 (1999).
11. S. Z. D. Cheng and B. Wunderlich,
Macromolecules, 21, 789 (1988).
12. A. Suzuki, Y. Nakamura and T. Kunugi, Polymer,
40, 5043 (1999).
13. J. C. Ganadas, J. A. Diego and J. Sellares,
Polymer, 41, 2899 (2000).
14. Z. Denchev, A. Nogales and A. Ezquerra, J.
Polym. Sci. Phys. Ed., 38, 1167 (2000).
15. J. J. Maritinez-vega, N. Zouzou and L. Boudou,
IEEE. Trans. Dielect. Elect. Insul., 8, 776
(2001).
16. N. Vasanthan and D. R. Salem, Macromolecules,
32, 6319 (1999).
17. S. Wang, D. Shen and R. Qian, J. Appl. Polym.
Sci., 60, 1385 (1996).
18. F. Kimuar, T. Kimuar, A. Sugisaki and M.
Komatsu, J. Polym. Sci. Phys. Ed., 35, 2741
(1997).
19. P L. Wu, E. M. Woo, J. Polym. Sci. Phys. Ed.,
40, 1571 (2002).
20. S. S. Park, S. H. Chae and S. S. Im, J. Polym.
Sci. Chem. Ed., 36, 147 (1998).
21. H. Matsuda, T. Asakura and T. Miki,
Macromolecules. 35, 4664 (2002).
22. M. Kimuar, R. S. Porter, J. Polym. Sci. Polym.
Ed., 21, 367 (1983).
23. C. S. Wang, C. H. Lin, Polymer, 41, 4029
(2000).
24. E. Andresen and H. G. Zachmann, Colloid. Polym.
Sci., 272, 1352 (1994).
25. R. S. Porter, L. H. Wang, Polymer, 33, 2019
(1992).
26. T. Suzuki, H. Tanaka and T. Nishi, Polymer, 30,
1287 (1989).
27. F. Pilati, E. Marianucci and C. Berti, J. Appl.
Polym. Sci., 30, 1267 (1985).
28. S. L. Rene, J. J. Robin and B. Boutevin,
Makromol. Chem. Phts., 203, 1249 (2002).
29. R. S. Tsai, J. W. You and Y. D. lee, J. Appl.
Polym. Sci., 86, 3652 (2002).
30. L. Minkova and P. L. Magagnini, Polymer. 42,
5607 (2001).
31. N. R. James, C. Ramesh and S. Sivaram,
Makromol. Chem. Phts., 202, 2267 (2001).
32. W. G. Zheng, Z. H. Wan and Z. N. Qi, Polymer
International 36, 801 (1995).
33. J. Devaux, P. Godard, J. Mercier, J. Appl.
Polym. Sci., 20, 1875 (1982).
34. Z. Zhang, Y. Xie and D. Ma, Europ. Polym. J.
37, 1961 (2001).
35. J. Devaux, P. Godard, J. Mercier, J. Appl.
Polym. Sci., 20, 1881 (1982).
36. J. Devaux, P. Godard, J. Mercier, J. Appl.
Polym. Sci., 20, 1901 (1982).
37. I. Hopfe, G. Pompe, and K. J. Eichhorn,
Polymer, 38, 2321 (1997).
38. J. Devaux, P. Godard, J. Mercier, Polym. Eng.
Sci., 22, 229 (1982).
39. R. Herrera, L. Eranco and J. Puiggali, J.
Polym. Sci. Chem. Ed., 40, 4141 (2002).
40. D. Ma, G. Zhang and X. Luo, J. Polym. Sci.
Chem. Ed., 39, 2961 (1998).
41. K. Y. Lim, B. C. Kim, K. J. Yoon, J. Appl.
Polym. Sci., 88, 131 (2003).
42. K. Y. Lim, B. C. Kim, K. J. Yoon, J. Polym.
Sci. Phys. Ed., 40, 2552 (2002).
43. Y. K. Chang, J. H. Youk, W. H. Jo, J. Appl.
Polym. Sci., 73, 1853 (1999).
44. H. W. Jun, S. H. Chae and S. S. Park, Polymer,
40, 1473 (1999).
45. M. E. Stewart, A. J. Cox and D. M. Naylor,
Polymer, 34, 4060 (1993).
46. K. H. Yoon, S. C. Lee and H. Park, Polymer, 38,
6079 (1997).
47. T. D. Patcheak, S. A. Jabarin, Polymer, 42,
8975 (2001).
48. Cheng-Fang Ou, J. Appl. Polym. Sci., 68, 1591
(1998).
49. Y. M. Sun, J. Y. Shien, J. Appl. Polym. Sci.,
81, 2055 (2001).
50. Mingming Guo and W. J. Brittain, Macromoleculs,
31, 7166 (1998).
51. Mingming Guo and H. G. Zachmann, Macromoleculs,
30, 2746 (1997).
52. A. M. Kenwright, S. K. Peace, Polymer, 40, 5851
(1999).
53. S. Collins, A. M. Kenwright and R. W. Richards,
Macromoleculs, 33, 2974 (2000).
54. A. M. Kenwright, S. K. Peace, R. W.
Richards,Polymer, 40, 2035 (1999).
55. G. Montaudo, C. Puglisi, Macromoleculs, 31, 650
(1998).
56. I. Avramov and N. Avramova, J. Macromol. Sci.,
B30, 335 (1991).
57. B. O. Kim and S. I. Woo, Polym. Bull., 41, 707
(1998).
58. J. C. Ho, K. W. Wei, J. Polym. Sci. Polym. Ed.,
38, 2124 (2000).
59. J. C. Ho, K. W. Wei, Macromoleculs,30, 1587
(1997).
60. J. C. Ho, K. W. Wei, polymer,41, 9299 (2000)
61. S. C. Lee, K. H. Yoon and H. C. Kim, Polymer,
38, 4831 (1997).
62. D. S. Park, S. H. Kim, J. Appl. Polym. Sci.,
87, 1842 (2003).
63. Y. Shi and S. A. Jabarin, J. Appl. Polym. Sci.,
81, 11 (2001).
64. Y. Shi and S. A. Jabarin, J. Appl. Polym. Sci.,
81, 23 (2001).
65. Y. Shi and S. A. Jabarin, J. Appl. Polym. Sci.,
80, 2422 (2001).
66. L. H. Sperling, Introduction to Physical
Polymer Science 2nd ed., John Wiley and Sons
(1992).
67. S. D. Hudson, D. D. Davies and A. J. Lovinger,
Macromolecules, 25,1759 (1992).
68. A. M. kotliar, J. Polym. Sci.,Macroml. Rev. 16,
367 (1981).
69. S. W. Lee, M. Cakmak, J.Macromol. Sci.Phys.,
37, 501 (1998).
70. S. Z. D. Cheng, R. M. Ho, B. S. Hsiao and K. H.
Gardner, Makromol. Chem. Phts., 197, 185
(1996).
71. R. M. Ho, S. Z. D. Cheng, B. S. Hsiao and K. H.
Gardner, Macromolecules,28,1938 (1995).
72. D. Ma, G. Zheng, Y. He and J. Ma, J. Polym.
Sci. Polym. Ed., 37, 2960 (1999).
73. Z. Zhang, X. Luo and D. Ma, J. Appl. Polym.
Sci., 80, 1558 (2001).