簡易檢索 / 詳目顯示

研究生: 傅思逸
Fu, Ssu-I
論文名稱: 異質接面雙極性電晶體之射極突出部結構與表面披覆效應之研究
Investigation of Emitter Ledge Structures and Surface Passivation Effects on Heterojunction Bipolar Transistors (HBTs)
指導教授: 鄭岫盈
Cheng, Shiou-Ying
劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 152
中文關鍵詞: 異質接面雙極性電晶體鞍點表面通道費米能階鎖住效應
外文關鍵詞: surface-channel, Fermi-level pinning effect, potential saddle point, HBT
相關次數: 點閱:84下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文我們利用實驗配合理論模擬,探討不同射極突出部厚度與長度對磷化銦鎵/砷化鎵異質接面雙極性電晶體效能之影響。本文中發現,習知表面通道仍存在於射極突出部與基極金屬電極層間之裸露基極層區域之表面,而且,不適當的突出部厚度將造成嚴重的表面復合現象於突出部側壁與基極金屬電極層介面間。此外,於此表面通道內,電子濃度與復合速率將隨突出部長度增加而減少;然而,長度若過長,將衍生元件面積與介面電容增加,不利於元件集積化與高頻之特性。相反之,此長度若過短,將無法有效抑制表面復合電流。所以適當之突出部厚度與長度對於抑制表面復合現象是一個值得探討的問題。從實驗與模擬結果中發現,磷化銦鎵/砷化鎵異質接面雙極性電晶體之最佳射極突出部厚度介於100-200 埃之間。當突出部厚度介於100-200 埃之間,元件具有最好的電晶體特性、最小的表面通道復合速率、最小的基極電流與最少的電子注入表面通道效應等優點。另一方面,當突出部長度大於0.8 μm以上時,在表面通道內之復合速率可被忽略,且元件具有一較佳直流特性與可接受之高頻性能,故磷化銦鎵/砷化鎵異質接面雙極性電晶體之最佳射極突出部長度為0.8 μm附近。
    接著本文係提供一種具有共形結構之異質接面雙極性電晶體及其製造方法,主要係於 (1) 帽層/射極之側壁、(2) 射極突出部表面、(3) 介於射極突出部與基極金屬電極層間之裸露基極表面、(4) 基極金屬電極層與半導體介面分別導入一硫化保護層,來解決突出部長度與厚度不易控制、裸露基極表面區域之表面通道衍生缺失以及基極金屬電極層接觸不佳等習知缺失。最後,在本文中,將提供一個全面性表面硫化披覆方式之異質接面雙極性電晶體。不同於一般基極表面硫化,我們除了在射極、基極與集極表面硫化處理外,也於射極側壁與基極側壁進行硫化處理,使得元件能獲得完整的保護層。

    In this dissertation, the influences of various emitter-ledge thickness and length on the InGaP/GaAs heterojunction bipolar transistors performance are investigated based on the simulation and experimental data. The undesired surface channel phenomenon at the exposed base surface between the base contact and the emitter ledge is comprehensively analyzed. Moreover, improper thickness of emitter-ledge passivations would cause serious surface recombination at the edge of emitter ledge. In addition, the electron density and recombination rate are decreased with increasing the emitter-ledge length at the surface channel. However, the longer emitter-ledge length increases the base-collector junction area which in turn deteriorates the high frequency performance. Therefore, the thickness and length of emitter ledge are a critical issue and should be carefully considered. From simulated and experimental results, the optimum emitter-ledge thickness of InGaP/GaAs HBT is between 100 and 200 A and the corresponding optimum emitter-ledge length is near 0.8 μm.
    The temperature-dependent DC characteristics and RF performance of an InGaP/GaAs HBT with the conformal passivation on base surface are studied and demonstrated. For the conformal passivation, an additional sulfur passivation layer is passivated on (1) the emitter sidewall; (2) the exposed emitter-ledge surface; (3) the exposed base surface between the base contact and the emitter ledge; and (4) the interface between the base contact and the base layer. Therefore, the related problems of emitter-ledge thickness, undesired surface-channel phenomenon of unpassivated base surface, and poor base contact are shown to have improved by using a conformal passivation method successfully.
    Finally, the temperature-dependent DC characteristics and microwave performance of InGaP/GaAs HBTs with and without full sulfur treatment are systematically studied and demonstrated. Not only the top surfaces of emitter, base and collector but also the sidewalls of emitter and base are completely passivated by the proposed full sulfur treatment. This technique is significantly different from previous reports since those methods passivated only the exposed base surface.

    Abstract (Chinese) Abstract (English) Table Captions Figure Captions Chapter 1. Introduction ………………..…….…………..….…………….. 1 Chapter 2. Influence of Emitter Ledge Thickness on the Device Characteristics of InGaP/GaAs Heterojunction Bipolar Transistors (HBTs) 2-1. Introduction ………………………….…………..…...…………….. 7 2-2. Model and Device Structures ……………..…….…….………….. 8 2-3. Results and Discussion ………………………….….…………….. 10 2-4. Summary ….......………….…………………….….…………….. 17 Chapter 3. Emitter Ledge Length Effects for InGaP/GaAs Heterojunction Bipolar Transistors (HBTs) 3-1. Introduction ………………………….…………..….…………….. 18 3-2. Theoretical Consideration and Device Structures ….........……….. 19 3-3. Results and Discussion ………………………….….…………….. 21 3-4. Summary ……...………….…………………….….…………….. 27 Chapter 4. Suppression of Surface Recombination of InGaP/GaAs Heterojunction Bipolar Transistors (HBTs) by Conformal Passivation 4-1. Introduction ………………………….…………..….…………….. 29 4-2. Experiments …………………………..…………….…………….. 31 4-3. Results and Discussion ………………………….….…………….. 32 4-4. Summary ……………..….…………………….….…………….. 43 Chapter 5. Improved DC and Microwave Performance of Heterojunction Bipolar Transistors by Full Sulfur Passivation 5-1. Introduction ………………………….…………..….…………….. 44 5-2. Experimental details …………………………….….…………….. 45 5-3. Results and Discussion ………………………….….…………….. 47 5-4. Summary ………......…….…………………….….…………….. 52 Chapter 6. Conclusion and Prospect 6-1. Conclusion ……………….…….......………….….…………….. 53 6-2. Prospect ……………….…….......…………….….…………….. 55 References …………………………….…….......……………...….….. 58 Tables Figures Publication List

    [1] W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
    [2] D. F. Guo, “Characteristics of a triple-well heterostructure-emitter bipolar transistor (TWHEBT),” Solid State Electron., vol. 41, pp. 501-506, 1997.
    [3] J. H. Tsai, “Application of AlGaAs/GaAs/InGaAs heterostructure emitter for resonant tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 2668-2670, 1999.
    [4] M. Ida, K. Kurishima, and N. Watanabe, “Over 300 GHz fT and fmax InP/InGaAs double heterojunction bipolar transistors with a thin pseudomorphic base,” IEEE Electron Device Lett., vol. 23, pp. 694-696, 2002.
    [5] Y. M. Kim, M. Urteaga, M. J. W. Rodwell, and A. C.Gossard, “High speed, low leakage current InP/In0.53Ga0.47As/InP metamorphic double heterojunction bipolar transistors,” Electron. Lett., vol. 38, pp. 1288-1289, 2002.
    [6] J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. Y. Fu, and W. C. Liu, “A new InP/InGaAs heterojunction bipolar transistor (HBT) with a superlattice-collector structure,” IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
    [7] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee, and W. C. Liu, “Comprehensive study of InGaP/ AlXGa1-XAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlXGa1-XAs graded layers,” Semicond. Sci. Technol., vol. 19, pp.351-358, 2004.
    [8] P. C. Chao, P. M. Smith, K. H. G. Duh, and J. C. M. Hwang, “60-GHz GaAs low-noise MESFETs by molecular-beam epitaxy,” IEEE Trans. Electron Devices, vol. 33, pp. 1852-1857, 1986.
    [9] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.
    [10] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, pp. 274-276, 1999.
    [11] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
    [12] Y. S. Lin, W. C. Hsu, C. H. Wu, W. Lin, and R. T. Hsu, “High breakdown voltage symmetric double -doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor,” Appl. Phys. Lett., vol. 75, pp. 1616-1618, 1999.
    [13] K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
    [14] P. H. Lai, C. W. Chen, C. I. Kao, S. I. Fu, Y. Y. Tsai, C. W. Hung, C. H. Yen, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “Influences of sulfur passivation on temperature-dependent characteristics of an AlGaAs/InGaAs/GaAs PHEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 1-8, 2006.
    [15] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Characteristics performance improvement in tensile-strained In0.5Al0.5As/InXGa1-XAs/In0.5Al0.5As metamorphic HEMT,” IEEE Trans. Electron Devices, vol. 53, pp. 406-412, 2006.
    [16] K. H. Su, W. C. Hsu, C. S. Lee, T. Y. Wu, Y. H. Wu, L. Chang, R. S. Hsiao, J. F. Chen, and T. W. Chi, “A novel dilute antimony channel In0.2Ga0.8AsSb/GaAs HEMT,” IEEE Electron Device Lett., vol. 28, pp. 96-99, 2007.
    [17] G. M. Loubriel, W. D. Helgeson, D. L. McLaughlin, M. W. O'Malley, F. J. Zutavern, A. Rosen, and P. J. Stabile, “Triggering GaAs lock-on switches with laser diode arrays,” IEEE Trans. Electron Devices, vol. 38, pp. 692-695, 1991.
    [18] S. Kakimoto, K. Shigihara, and Y. Nagai, “Laser diodes in photon number squeezed state,” IEEE J. Quantum Electron., vol. 33, pp. 824-830, 1997.
    [19] C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature dependence of the radiative recombination zone in GaN/InGaN multiple quantum well light emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
    [20] P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
    [21] I. L. Chen, W. C. Hsu, H. C. Kuo, C. P. Sung, C. H. Chiou, J. M. Wang, Y. H. Chang, H. C. Yu, and T. D. Lee, “Effect of annealing on low-threshold-current large-wavelength InGaAs quantum well vertical-cavity laser,” Jpn. J. Appl. Phys., vol. 45, pp. 770-773, 2006.
    [22] H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
    [23] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
    [24] K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, “Novel SiC/Si heterostructure negative-differential-resistance diode for use as switch with high on/off current ratio and low power dissipation,” IEEE Electron Device Lett., vol. 19, pp. 294-296, 1998.
    [25] D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron., vol. 40, pp. 413-419., 2004.
    [26] D. F. Guo, C. H. Yen, J. H. Tsai, W. S. Lour, and W. C. Liu, “Characteristics improvement for an n-p-n heterostructure optoelectronic switch by introducing a wide-gap layer in the collector,” J. Electrochem. Soc., vol. 154, pp. H13-H15, 2007.
    [27] H. Kroemer, “Theory of wide-gap emitter for transistors,” Proc. IRE, vol. 45, pp. 1535-1536, 1957.
    [28] S. Y. Cheng, “Comprehensive study of an InGaP/AlGaAs/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure,” Semicond. Sci. Technol., vol. 17, 701-707, 2002.
    [29] Y. W. Chen, W. C. Hsu, R. T. Hsu, Y. H. Wu, Y. J. Chen, and L. S. Lin, “Investigation of InGaP/GaAs heterojunction bipolar transistor with doping graded base,” J. Vac. Sci.Technol. B, vol. 21, 2555-2557, 2003.
    [30] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee and W. C. Liu, “Comprehensive study of InGaP/AlXGa1-XAs/GaAs heterojunction bipolar transistors with different doping concentrations of AlXGa1-XAs graded layers,” Semicond. Sci. Technol., vol. 19, 351-358, 2004.
    [31] M. J. Mondry and H. Kroemer, “Heterojunction bipolar transistor using a (Ga,In)P emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 6, pp. 175-177, 1985.
    [32] S. S. Lu and C. C. Huang, “High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
    [33] W. Liu, E. Beam, T. Henderson, and S. K. Fan, “Extrinsic base surface passivation in GaInP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 14, pp. 301-303, 1993.
    [34] C. E. Huang, C. P. Lee, H. C. Liang, and R. T. Huang, “Critical spacing between emitter and base in InGaP heterojunction bipolar transistors (HBTs),” IEEE Electron Device Lett., vol. 23, pp. 576-578, 2002.
    [35] W. Liu, “Ideality factor of extrinsic base surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” Electron. Lett., vol. 28, pp. 379-380, 1992.
    [36] W. Liu, D. Costa, and J. S. Harris, Jr., “Current gain of graded AlGaAs/GaAs heterojunction bipolar transistors with and without a base quasi-electric field,” IEEE Trans. Electron Devices, vol. 39, pp. 2422-2429, 1992.
    [37] W. Liu and J. S. Harris, Jr., “Effects of emitter-base contact spacing on the current gain in heterojunction bipolar transistors,” Jpn. J. Appl. Phys., vol. 31, pp. 2349-2351, 1992.
    [38] W. Liu and J. S. Harris, Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.
    [39] B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.
    [40] S. Tiwari, D. J. Frank, and S. L. Wright, “Surface recombination in GaAlAs/GaAs heterostructure bipolar transistors”, J. Appl. Phys., vol. 64, pp. 5009-5012, 1988.
    [41] C. J. Sandroff, M. S. Hegde, L. A. Farrow, C. C. Chang, and J. P. Harbison, “Electronic passivation of GaAs surfaces through the formation of arsenic-sulfur bonds,” Appl. Phys. Lett., vol. 54, pp. 362-364, 1989.
    [42] Y. T. Oh, S. C. Byun, B. R. Lee, T. W. Kang, C. Y. Hong, S. B. Park, H. K. Lee, and T.W. Kim, “Diminution of the surface states on GaAs by a sulfur treatment,” J. Appl. Phys., vol. 76, pp.1959-1961, 1994.
    [43] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.
    [44] S. Tiwari and D. J. Frank, “Analysis of the operation of GaAlAs/GaAs HBT’s,” IEEE Trans. Electron Devices, vol. 36, pp. 2105-2121, 1989.
    [45] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.
    [46] H. Oigawa, J. F. Fan, Y. Nannichi, H. Sugahara, and M. Oshima, “Universal passivation effect of (NH4)2SX treatment on the surface of III-V compound semiconductors,” Jpn. J. Appl. Phys., vol. 30, pp. 322-325, 1991.
    [47] M. T. Fresina, Q. J. Hartmann, and G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 17, pp. 555-556, 1996.
    [48] Y. S. Lin, Y. H. Wu, J. S. Su, W. C. Hsu, S. D. Ho, and W. Lin, “An improved In0.5Ga0.5P/GaAs double heterostructure-emitter bipolar transistor using emitter edge-thinning technique,” Jpn. J. Appl. Phys. vol. 36, pp. 2007-2009, 1997.
    [49] W. S. Lour and J. L. Hsieh, “Effects of passivation-layer thickness and current gain enhancement of InGaP/GaAs -doped single heterojunction bipolar transistors using an InGaP passivation layer,” Semicond. Sci. Technol., vol. 13, pp. 847-851, 1998.
    [50] C. Y. Chen, S. I Fu, S. Y. Cheng, C. Y. Chang, C. H. Tsai, C. H. Yen, S. F. Tsai, R. C. Liu, and W. C. Liu, “Influences of surface sulfur treatments on the temperature-dependent characteristics of heterojunction bipolar transistors (HBTs),” IEEE Trans. Electron Devices, vol. 51, pp. 1963-1971, 2004.
    [51] S. W. Tan, H. R. Chen, M. Y. Chu, W. T. Chen, A. H. Lin, M. K. Hsu, T. S. Lin, and W. S. Lour, “Comparisons between InGaP/GaAs heterojunction bipolar transistors with a sulfur- and an InGaP- passivated base surface,” Superlatt. Microstruct., vol. 37, pp. 401-409, 2005.
    [52] T. Henderson, “Modeling gallium arsenide heterojunction bipolar transistor ledge variations for insight into device reliability,” Microelectron. Reliab., vol. 42, pp. 1011-1020, 2002.
    [53] T. J. deLyon, H. C. Casey, Jr., P. M. Enquist, J. A. Hutchby, and A. J. SpringThorpe, “Surface recombination current and emitter compositional grading in npn and pnp GaAs/AlXGa1-XAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 54, pp. 641-643, 1989.
    [54] N. Hayama and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT’s with AlGaAs surface passivation layer,” IEEE Electron Device Lett., vol. 11, pp. 388-390, 1990.
    [55] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
    [56] H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
    [57] S. Y. Cheng, “An InGaP/AlGaAs/GaAs heterojunction bipolar transistor with zero conduction-band discontinuity,” Superlatt. Microstruct., vol. 33, pp. 1-7, 2003.
    [58] H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs double doped channel heterostructure field-effect transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
    [59] S. Y. Cheng, “Analysis of improved DC and AC performances of an InGaP/GaAs heterojunction bipolar transistor with a graded AlxGa1-xAs layer at emitter/base heterojunction,” Solid State Electron., vol. 48, pp. 1087-1094, 2004.
    [60] S. Y. Cheng, C. Y. Chen, J. Y. Chen, W. C. Liu, W. L. Chang, and M. H. Chiang, “Comprehensive studies of InGaP/GaAs heterojunction bipolar transistors with different thickness of setback layers,” Superlatt. Microstruct., vol. 37, pp. 171-183, 2005.
    [61] W. Liu, D. Costa, and J. S. Harris, Jr, “Theoretical comparison of base bulk recombination current and surface recombination current of a mesa AlGaAs/GaAs heterojunction bipolar transistor,” Solid State Electron., vol. 34, pp. 1119-1123, 1991.
    [62] Z. Jin, S. Neumann, W. Prost, and F. J. Tegude, “Surface recombination mechanism in graded-base InGaAs–InP HBTs,” IEEE Trans. Electron Devices, vol. 51, pp. 1044-1045, 2004.
    [63] N. G. M. Tao, H. Liu, and C. R. Bolognesi, “Surface recombination currents in “Type-II” npn InP–GaAsSb–InP self-aligned DHBTs,” IEEE Trans. Electron Devices, vol. 52, pp. 1061-1066, 2005.
    [64] E. Nebauer, M. Mai, J. Würfl, and W. Österle, “Au/Pt/Ti/Pt base contacts to n-InGaP/p+-GaAs for self-passivating HBT ledge structures,” Semicond. Sci. Technol., vol. 15, pp. 818-822, 2000.
    [65] M. T. Fresina, D. A. Ahmari, P. J. Mares, Q. J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low-noise InGaP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 16, pp. 540-541, 1995.
    [66] W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
    [67] Y. M. Hsin, S. T. Hsu, and C. C. Fan, “Electron saturation velocity of GaInP deduced in a GaInP/GaAs/GaInP double heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 77, pp. 1538-1539, 2000.
    [68] W. C. Liu, H. J. Pan, W. C. Wang, S. C. Feng, K. W. Lin, K. H. Yu, and L. W. Laih, “On the multiple negative-differential-resistance (MNDR) InGaP/GaAs resonant tunneling bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1054-1059, 2001.
    [69] C. M. Wang, H. T. Hsu, H. C. Shu, and Y. M. Hsin, “High linearity InGaP/GaAs power HBTs by collector design,” IEEE Electron Device Lett., vol. 25, pp. 58-60, 2004.
    [70] Y. S. Hiraoka and J. Yoshida, “Two-dimensional analysis of the surface recombination effect on current gain for GaAlAs/GaAs HBT’s,” IEEE Trans. Electron Devices, vol. 35, pp. 857-862, 1988.
    [71] S. N. Mohammad, J. Chen, J. I. Chyi, and H. Morkoç, “Suppression of emitter size effect on the current-voltage characteristics of AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 56, pp. 937-939, 1990.
    [72] O. Nakajima, K. Nagata, H. Ito, T. Ishibashi, and T. Sugeta, “Emitter-base junction size effect on current gain Hfe of AlGaAs/GaAs heterojunction bipolar transistors,” Jpn. J. Appl. Phys., vol. 24, pp. L596-L598, 1985.
    [73] H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
    [74] Y. S. Lin, D. H. Huang, W. C. Hsu, K. H. Su, and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning,” Semicond. Sci. Technol., vol. 21, pp. 303-305, 2006.
    [75] S. Y. Cheng, S. I. Fu, K. Y. Chu, P. H. Lai, L. Y. Chen, W. C. Liu, and M. H. Chiang, “Improved DC and microwave performance of heterojunction bipolar transistors by full sulfur passivation,” J. Vac. Sci. & Technol. B, vol. 24, pp. 669-674, 2006.
    [76] J. W. Seo, T. Koker, S. Agarwala, I. Adesida, “Etching characteristics of AlXGa1-XAs in (NH4)2SX solutions,” Appl. Phys. Lett., vol. 60, pp. 1114-1116, 1992.
    [77] H. Kűnzel and K. Ploog, “The effect of As2 and As4 molecular beam species on photoluminescence of molecular beam epitaxially grown GaAs,” Appl. Phys. Lett., vol. 37, pp. 416-418, 1980.
    [78] A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, “Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment,” Appl. Phys. Lett., vol. 54, pp. 332-334, 1989.
    [79] M. G. Adlerstein and J. M. Gering, “Current induced degradation in GaAs HBT’s,” IEEE Trans. Electron Devices, vol. 47, pp. 434-439, 2000.
    [80] M. Y. Ghannam and R. P. Mertens, “Surface recombination current with a nonideality factor greater than 2,” IEEE Electron Device Lett., vol. 10, pp. 242-244, 1989.
    [81] W. Liu, Handbook of III-V Heterojunction Bipolar Transistors. New York: Wiley, 1998.
    [82] G. Hirsch, P. Krüger, J. Pollmann, “Surface passivation of GaAs (001) by sulfur:ab initio studies,” Surf. Sci., vol. 402-404, pp. 778-781, 1998.
    [83] S. I. Fu, S. Y. Cheng, and W. C. Liu, “Characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with sulfur treatments,” Superlatt. Microstruct., vol. 39, pp. 436-445, 2006.
    [84] J. A. Babcock, J. D. Cressler, L. S. Vempati, S. D. Clark, R. C. Jaeger, and D. L. Harame, “Ionizing radiation tolerance and low-frequency noise degradation in UHV/CVD SiGe HBT’s,” IEEE Electron Device Lett., vol. 16, pp. 351-353, 1995.
    [85] U. Gogineni, J. D. Cressler, G. Niu, and D. L. Harame, “Hot electron and hot hole degradation of UHV/CVD SiGe HBT’s,” IEEE Trans. Electron Devices, vol. 47, pp. 1440-1448, 2000.
    [86] S. J. Jeng, B. Jagannathan, J. S. Rieh, J. Johnson, K. T. Schonenberg, D. Greenberg, A. Stricker, H. Chen, M. Khater, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “A 210-GHz fT SiGe HBT with a non-self-aligned structure,” IEEE Electron Device Lett., vol. 22, pp. 542-544, 2001.
    [87] B. Jagannathan, M. Khater, F. Pagette, J. S. Rieh, D. Angell, H. Chen, J. Florkey, F. Golan, D. R. Greenberg, R. Groves, S. J. Jeng, J. Johnson, E. Mengistu, K. T. Schonenberg, C. M. Schnabel, P. Smith, A. Stricker, D. Ahlgren, G. Freeman, K. Stein, and S. Subbanna, “Self-aligned SiGe npn transistors with 285 GHz fmax and 207 GHz fT in a manufacturable technology,” IEEE Electron Device Lett., vol. 23, pp. 258-260, 2002.
    [88] J. S. Hamel, Y. T. Tang, and K. Osman, “Technological requirements for a lateral SiGe HBT technology including theoretical performance predictions relative to vertical SiGe HBTs,” IEEE Trans. Electron Devices, vol. 49, pp. 449-456, 2002.
    [89] S. S. Chen, T. Y. Chen, T. H. Tang, S. C. Huang, T. L. Hsu, H. C. Tseng, J. K. Chen, and C. H. Chou, “Investigation of a SiGe HBT during ESD stress in a 0.18-μμm SiGe BiCMOS process,” IEEE Electron Device Lett., vol. 24, pp. 168-170, 2003.
    [90] K. Washio, E. Ohue, R. Hayami, A. Kodama, H. Shimamoto, M. Miura, K. Oda, I. Suzumura, T. Tominari, and T. Hashimoto, “High-speed scaled-down self-aligned SEG SiGe HBTs,” IEEE Trans. Electron Devices, vol. 50, pp. 2417-2424, 2003.
    [91] D. A. Ahmari, M. T. Fresina, Q. J. Hartman, D.W. Barlage, P. J. Mares, M. Feng, and G. E. Stillman, “High-speed InGaP–GaAs HBTs with a strained In Ga As base,” IEEE Electron Device Lett., vol. 17, pp. 226–228, 1996.
    [92] N. Y. Li, P. C. Chang, A. G. Baca, X. M. Xie, P. R. Sharps, and H. Q. Hou, “ DC characteristics of MOVPE-grown npn InGaP/InGaAsN DHBT's,” Electron. Lett., vol. 36, pp. 81-82, 2000.
    [93] R. E. Welser, P. M. DeLuca, and N. Pan, “Turn-on voltage investigation of GaAs-based bipolar transistors with Ga1-XInXAs1-yNy base layers,” IEEE Electron Device Lett., vol. 21, pp. 554–556, 2000.
    [94] A. G. Baca, C. Monier, P. C. Chang, N. Y. Li, F. Newman, E. Armour, S. Z. Sun, and H. Q. Hou, “High-speed performance of npn InGaAsN based double heterojunction bipolar transistors,” IEEE GaAs IC Symp. Tech. Dig., 2001, pp. 192–194.
    [95] P. M. DeLuca, C. R. Lutz, R. E. Welser, T. Y. Chi, E. K. Huang, R. J. Welty, and P. M. Asbeck, “Implementation of reduced turn-on voltage InGaP HBTs using graded GaInAsN base regions,” IEEE Electron Device Lett., vol. 23, pp. 582–584, 2002.
    [96] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1990.
    [97] H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E. W. Lin, G. S. Dow, A. K. Oki, D.C. Streit, and B. R. Allen, “Low phase noise millimeter-wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid-St. Circ., vol. 31, pp. 1419–1425, 1996.
    [98] K. W. Kobayashi, D. K. Umemoto, T. R. Block, A. K. Oki, and D. C. Streit, “A monolithically integrated HEMT-HBT low noise high linearity variable gain amplifier,” IEEE J. Solid-St. Circ., vol. 31, pp. 714–718, 1996.
    [99] T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, “An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications,” IEEE J. Solid-St. Circ., vol. 33, pp. 1290–1296, 1998.
    [100] K. W. Kobayashi, J. C. Cowles, L. T. Tran, A. G. Aitken, M. Nishimoto, J. H. Elliott, T. R. Block, A. K. Oki, and D. C. Streit, “A 44-GHz-high IP3 InP HBT MMIC amplifier for low DC power millimeter-wave receiver applications,” IEEE J. Solid-St. Circ., vol. 34, pp. 1188–1195, 1999.

    下載圖示 校內:2008-07-14公開
    校外:2008-07-14公開
    QR CODE