簡易檢索 / 詳目顯示

研究生: 張家維
Chang, Chia-Wei
論文名稱: 以金屬蒸氣真空弧離子佈植技術進行氮化鈦微結構之研究
Study of ion-implanted titanium nitride microstructure using metal vapor vacuum arc technique
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 微機電系統工程研究所
Institute of Micro-Electro-Mechancial-System Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 鈦六鋁四釩金屬蒸氣真空弧抗腐蝕性抗磨耗性表面硬度
外文關鍵詞: metal vapor vacuum arc, Ti-6Al-4V, corrosion resistance, wear resistance, surface hardness
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以金屬蒸氣真空弧技術在鈦六鋁四釩基材上產生氮化鈦結構,此方法可將純鈦金屬離子化,透過電場加速使其通過充滿氮氣分子的環境中,藉由兩者互相碰撞進而轟擊鈦六鋁四釩基材,產生氮化鈦的擴散層。實驗中改變不同的加速電壓(25、50 kV)以及鈦離子植入劑量(5×1016、1×1017、2×1017 鈦離子/平方公分)在2×10-3 Pa的艙體壓力下進行離子佈植,以期達成抗腐蝕性、抗磨耗性以及表面硬度的提升。離子佈植完成後利用小角度X光繞射分析儀進行結晶結構分析,利用X光光電子能譜儀鑑定表面化學組成,利用歐傑電子能譜儀進行縱深分析,利用接觸角量測獲得表面的親疏水性,透過電化學分析評估其抗腐蝕性,透過奈米薄膜材料試驗機評估其表面硬度,透過微振磨耗測試評估其抗磨耗性質。由結果中顯示:(1)金屬蒸氣真空弧技術能夠在具有氮氣的反應槽中之基材表面生成αTiN0.3 and TiN結晶結構;(2)其中當加速電壓為25 kV,植入劑量到達2×1017(鈦離子/平方公分)時,由表面元素分析推測其生成鈍化膜,而在抗腐蝕測試中能有效提升其抗腐蝕性;(3)鈦六鋁四釩經過鈦離子佈植2×1017(鈦離子/平方公分)後能有效提升其表面硬度,同時,其抗磨耗的特性也因此獲得強化。

    This study utilized metal vapor vacuum arc source (MeVVA) technique to prepare the Ti-N phase on the surface of Ti-6Al-4V. By this method, non-excited gaseous molecules can be saturated in the processing chamber, leading to collision with the processing ions. The extracted and accelerated metal ions are thereafter bombarded into the target substrate and formed a diffused layer. In the experiment, ion implantation was performed under a pressure of 2×10-3 Pa, then supplied with different acceleration voltages (25 and 50 kV) and titanium ion doses (5×1016, 1×1017 and 2×1017 ions/cm2) in order to improve the corrosion resistance, wear resistance and surface hardness. After ion implantation, the GIXRD was employed for determining the crystalline structure on the modified surface. The XPS was utilized for identifying the new binding species. The AES was used for profiling the treatment depth. Water droplet angle was measured to evaluate surface wetting properties. Corrosion resistance was measured by an electrochemical instrument. Surface hardness was measured by nanoindenter. Wear resistance was measured by micro-motion instrument. Experimental results demonstrated that (1) MeVVA treatment created a novel αTiN0.3 and TiN crystalline structure on the surface of Ti-6Al-4V in N2 atmosphere. (2) When the dose reached to 2×1017 Ti-ions/cm2 with acceleration voltage of 25 kV, corrosion resistance significantly improved by forming a passive film, which could be characterized by EDS detection. (3) After titanium ion implantation with the dose of 2×1017 Ti-ions/cm2, surface-hardness significantly improved; meanwhile, wear-resistance was significantly improved.

    中文摘要…………………………………………………………………Ⅰ 英文摘要…………………………………………………………………Ⅱ 目錄………………………………………………………………………Ⅲ 圖索引……………………………………………………………………Ⅵ 表索引………………………………………………………………… VIII 第一章 序論 1-1 前言……………………………………………………………………1 1-2 鈦與鈦合金理論基礎…………………………………………………3 1-3 金屬蒸氣真空弧技術…………………………………………………4 1-4 離子佈植之能量損耗機制……………………………………………6 1-5 離子佈植之強化機制…………………………………………………9 1-6 腐蝕型態………………………………………………………………10 第二章 文獻回顧與研究目的 2-1 文獻回顧………………………………………………………………12 2-2 文獻整理………………………………………………………………16 2-3 研究動機與目的………………………………………………………17 第三章 實驗材料與方法 3-1 實驗材料與準備………………………………………………………18 3-2 金相試件製備程序……………………………………………………19 3-3 實驗設備………………………………………………………………19 3-4 分析儀器………………………………………………………………21 3-4-1 X 光光電子能譜儀…………………………………………………21 3-4-2 奈米薄膜材料試驗機………………………………………………22 3-4-3 低掠角X 光繞射儀…………………………………………………24 3-4-4 電化學測試…………………………………………………………25 3-4-5 微振磨耗試驗機……………………………………………………26 3-4-6 歐傑電子能譜儀……………………………………………………27 3-4-7 靜態接觸角量測儀…………………………………………………28 3-4-8 原子力顯微鏡………………………………………………………29 3-4-9 掃描式電子顯微鏡…………………………………………………30 3-4-10光學顯微鏡…………………………………………………………31 3-5 實驗流程………………………………………………………………32 第四章 實驗結果與討論 4-1 以金屬蒸氣真空弧技術對鈦合金進行氮化鈦佈植…………………33 4-1-1 低掠角X 光繞射儀分析……………………………………………34 4-1-2 電化學測試…………………………………………………………37 4-1-3 水滴接觸角測試……………………………………………………39 4-1-4 掃描式電子顯微鏡分析……………………………………………40 4-1-5 金相觀察……………………………………………………………44 4-1-6 微振磨耗測試………………………………………………………47 4-1-7 歐傑電子能譜儀分析………………………………………………48 4-1-8 原子力顯微鏡分析…………………………………………………49 4-1-9 奈米硬度測試………………………………………………………50 4-1-10X 光光電子能譜儀分析……………………………………………51 4-2 離子佈植後試片表面之物理及化學性質分析………………………53 4-3 離子佈植後試片表面抗腐蝕性質探討………………………………53 4-4 離子佈植後試片表面機械性質分析…………………………………54 結論………………………………………………………………………56 參考文獻…………………………………………………………………57 附錄………………………………………………………………………63

    參考文獻

    1. Hong Xiao,“Introduction to semiconductor manufacturing technology”, Prentice Hall, pp. 352-380, 2001.
    2. Stanley Middleman and Arthur K. Hochberg, “Process Engineering Analysis in Semiconductor Device Fabrication”, McGraw Hall, pp. 126-132, 1993.
    3. Gerhard Welsch, Rodney Boyer and E. W. Collings, “Materials properties Handbook”, ASM International, pp. 55-70, 1994.
    4. E. J. Mlttemeijer, “Materials science forum”, Trans Tech Publications Ltd, pp. 431-449, 1994.
    5. George J. Rudzki, “Surface Finishing System”, American Society for Metal,
    pp.161-169, 1983.
    6. Michael Quirk and Julian Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, pp. 152-176, 2001.
    7. 張俊彥,“半導體元件物理與製作技術”,高立圖書有限公司,pp. 414-507,1999.
    8. 李世鴻,“半導體工程原理”,全威圖書有限公司,pp. 244-255, 399-424,1997.
    9. 張通和,“離子注入表面優化技術”,冶金工業出版社,pp. 1-29, 308-349,1993.
    10. 張通和,“離子束材料改性科學和應用”,科學出版社,pp. 1-54, 346-362,1999.
    11. J. R. Rose, “工業等離子體工程”,科學出版社,pp. 128-148,1998.
    12. Mattew J. Donachie, Jr., ed.“Titanium and A Technical Guize”, 2nd Edition, ASM International, 1989.
    13. E. A.鮑利索娃等著,陳石卿譯,“鈦合金金相學”, 新華書店北京發行所, 1986.
    14. J. F. Ziegler, “Handbook of ion implantation technology”, North Holland, pp. 25-64, 1992.
    15. Robert F. Hochman, “Ion planting and implantation”, American Society for Metal, pp. 115-123, 1985.
    16. Zhang Tonghe, Zhang Huixing and Ji Changzhoua, “Industrialization of MEVVA source ion implantation”, Surface and Coatings Technology, Vol. 128-129, pp. 1-8, 2000.
    17. H. L. Liu, S. S. Gearhart and J. H. Booske, “Ultra-Shallow P+/N Junctions Formed by Recoil Implantation”, Journal of Electronic Materials, Vol. 27, No.2, pp. 1027, 1998.
    18. F. Spaepan and D. Turnbull, "Crystalline Process," in Laser Annealing of Semicodncutors, Academic Press, New York, Chap. 2, 1982.
    19. P. Marcus and Florian Mansfled, “Analytical methods in corrosion science and engineering”, Taylor & Francis, Chap. 3, 2006.
    20. S. M. Johns, T. Bell, M. Samandi and G. A. Collins “Wear resistance of plasma immersion ion implanted Ti-6Al-4V”, Surface and Coatings Technology, Vol. 85, pp. 7-14, 1996.
    21. K. Y. Gao and B. X. Liu, “High current Ni-ion implantation into Al films”, Nuclear Instruments and Methods in Physics Research B, Vol. 132, pp. 68-72, 1997.
    22. J. D. Liao, J. Rieu, B. Forest, Y. Corre, L. Boudonkha and S. Paletto, “Mechanical properties of ion-implanted biomaterial surfaces evaluated by nano-indenter”, Polymer in Medicine and Surgery, pp. 105-112, The Institute of Materials in associate with J. Artifical Organs, 1996.
    23. J. D. Liao, J. Rieu, Y. Corre, L-M Rabbe, L. Boudoukha and S. Paletto, “Mechanical and chemical modifications of PE surface by ion implantation” Materials in Clinical Applications, Advances in Science and Technology Vol. 12, pp. 141-152, Techna Pub. S.r.i., 1995.
    24. J. D. Liao, “Physico-chemical and mechanical modifications of polyethylene and polypropylene surface by nitrogen-ion implantation, microwave plasma treatment, electron-beam and γ-ray radiations”, Ph. D. Thesis of Ecole Nationale Supérieure des Mines and Institut Nationale Polytechnique de Grenoble, No. TD-108, France, 1994.
    25. 廖峻德、陳文彬、王明誠 “超高分子聚乙烯人工髖臼杯之表面機械性質強化”, 中華醫學工程學刊, Vol. 18, No.2, pp. 139-145, 1998.
    26. Y. Itoh, A.Itoh, H. Azuma and T. Hioki, “Improving the tribological properties of Ti–6Al–4V alloy by nitrogen-ion implantation”, Surface and Coatings Technology, Vol. 111, pp. 172-176, 1999.
    27. M. Rinnera, J. Gerlachb and W. Ensinger, “Formation of titanium oxide films on titanium and Ti-6Al-4V by O2-plasma immersion ion implantation” Surface and Coatings Technology, Vol. 132, pp. 111-116, 2000.
    28. F. Berberich, W. Matz, U. Kreissig, E. Richter, N. Schell and W. Moller, “Structural characterisation of hardening of Ti-Al-V alloys after nitridation by plasma immersion ion implantation” Applied Surface Science, Vol. 179, pp. 13-19, 2001.
    29. X. B. Tian, L. P. Wang, Q. Y. Zhang1 and P. K. Chu, “Dynamic nitrogen and titanium plasma ion implantation/deposition at different bias voltages” Thin Solid Films, Vol. 390, pp. 139-144, 2001.
    30. X. Tian, D. T. K. Kwok, P. K. Chua and C. Chan, “Nitrogen depth profiles in plasma implanted stainless steel”, Physics Letters A, Vol. 299, pp. 577-580, 2002.
    31. X. B. Tian, T. Zhang, R. K. Y. Fu and P. K. Chu, “Influence of bias voltage on the tribological properties of titanium nitride films fabricated by dynamic plasma ion implantation/deposition” Surface and Coatings Technology, Vol. 161, pp. 232-236, 2002.
    32. S. B. Qadri, B. Molnar, M. Yousuf and C.A. Carosella, ”X-ray determination of strain in ion implanted GaN”, Nuclear Instrument and Methods in Physics Research B, Vol. 190, pp. 878-881, 2002.
    33. Y. Hara, T. Yamanishi, K. Azuma, H. Uchida and M. Yatsuzuka, ”Microstructure of Al-alloy surface implanted with high-dose nitrogen”, Surface and Coatings Technology, Vol. 156, pp. 166-169, 2002.
    34. L. Tana, R.A. Dodd and W.C. Crone, “Corrosion and wear-corrosion behavior of NiTi modifiedby plasma source ion implantation”, Biomaterials, Vol. 24, pp. 3931-3939, 2003
    35. Sheng Han, Hong-Ying Chen, Zue-Chin Chang, Jian-Hong Lin, Ching-Jung Yang, Fu-Hsing Lu, Fuh-Sheng Shieu and Han C.Shih, “Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon”, Thin Solid Films, Vol. 436, pp. 238-243, 2003.
    36. Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, X. B. Tian, R. K. Y. Fu, L. P. Wang and P. K. Chu, “Structure and properties of biomedical TiO2 Film synthesized by dual plasma deposition”, Surface and Coatings Technology, Vol. 156, pp. 259-300, 2004.
    37. Chun-sheng Ren, Zong-xin Mu, You-nian Wang and Hung Yu, “Corrosion behavior of TiN films prepared by vacuum arc deposition and nitrogen ion beam dynamic mixing implantation”, Surface and Coatings Technology, Vol. 185, pp. 210-214, 2004.
    38. Q.G. Zhoua,, X.D. Baia, X.Y. Xuea, X.W. Chena, J. Xub and D.R. Wang, “Influence of aluminum ion implantation on oxidation behavior in air at 500 ℃of TiN coatings”, Surface and Coatings Technology, Vol. 191, pp. 212-215, 2005.
    39. Youming Liu a,c, Liuhe Li a,b, Ming Xua, Xun Cai a, Qiulong Chena, Yawei Hua and Paul K. Chuc,“Effects of nitrogen ion implantation and implantation energy on surface properties and adhesion strength of TiN films deposited on aluminum by magnetron sputtering”, Materials Science and Engineering A, Vol. 415, pp. 140-144, 2005.
    40. Xiaoqin Zeng, Guosong Wu and Shoushan Yao, “Formation by reactive magnetron sputtering of TiN coating on Ti-implanted magnesium alloy”, Material Letters, Vol. 60, pp. 2252-2255, 2006.
    41. D.Q. Peng, X.D. Bai and B.S. Chen, “Effect of copper ions implantation on corrosion behavior of zircaloy-2 in 1M H2SO4”, Materials Chemistry and Physics, Vol.98, pp. 337-343, 2006.
    42. D.Q. Peng, X.D. Bai, F. Pan, H. Sun and B.S. Chen, “Influence of titanium ions implantation on corrosion behavior of zirconium in 1 M H2SO4”, Applied Surface Science, Vol. 252, pp. 2196-2203, 2006.
    43. W. Bauer, “Particles and peri-implant bone resorption”, Clinical Orthopaedics and Related Research, Vol. 405, pp. 138-143, 2002.
    44. J. J. Jacobs, K. A. Roebuck, M. Archibeck, N. J. Hallab and T. T. Glant, “Osteolysis: basic science”, Clinical Orthopaedics and Related Research, Vol. 393, pp. 71-77, 2001.
    45. B. Mjoberg, “The theory of early loosening of hip prostheses”, Orthopedics, Vol. 20, No. 12, pp. 1169-1175, 1997.
    46. A. Marmur, “Equilibrium Contact Angles: Theory and Measurement”, Colloids and Surfaces A, Vol. 116, pp. 55-61, 1996.
    47. E.L. Decker, B. Frank, Y. Suo and S. Garoff, “Physics of Contact Angle Measurement”, Colloids and Surfaces A, Vol. 156, pp. 177-189, 1999.
    48. D. Y. Kwok and A. W. Neumann, “Contact Angle Measurement and Contact Angle Interpretation”, Advance in Colloid and Interface Science, Vol. 81, pp. 167-249, 1999.
    49. F. Garbassi, M. Morra and E. Occhiello, “Polymer Surfaces from Physics to Technology, Chap. 4, Wiley, 1994.
    50. D. Bonnell, “Scanning Probe Microscopy and Spectroscopy Theory, techniques, and Applications”, Wiley, 2001.
    51. K. B. Winterbon, “Ion Implantation Range and Energy Deposition Distributions, Low Energies”, Plenum Press, 1975.
    52. M. Farley and B. Simonton, “Ion Implantation Science and Technology”, Ion Implantation Technology Co. Yorktown, 1996.

    下載圖示 校內:2008-07-31公開
    校外:2008-07-31公開
    QR CODE