簡易檢索 / 詳目顯示

研究生: 張惠敏
Chang, Hui-Min
論文名稱: 以真實世界數據探討HIV單錠處方的治療結果與服藥依從性及寬容度
Exploring Treatment Outcomes, Patient Adherence and Drug Forgiveness of Single-Tablet Regimens for HIV using Real World Data
指導教授: 周辰熹
Chou, Chen-His
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 165
中文關鍵詞: HIV 治療雙藥療法寬容度漏服藥物服藥依從性
外文關鍵詞: HIV Treatment, Two-Drug Regimens, Forgiveness, Missed Dose, Adherence
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在評估單錠抗反轉錄病毒藥物(STRs)中的第二代嵌合酶鏈轉移抑制劑(INSTI),特別是含dolutegravir(DTG)的三藥方案(3DRs)和雙藥方案(2DRs)在現實世界中的療效、藥物寬容度及達到病毒抑制的依從性閾值。本研究包含回顧性和前瞻性研究,分析初次接受第二代嵌合酶鏈轉移抑制劑的單錠處方以及因病毒失敗或藥物不良反應更換藥物的病人。結果顯示,BIC/FTC/TAF和ABC/DTG/3TC這兩個單錠處方能在HIV-1感染者中有效達到並維持病毒抑制。在含DTG的處方顯示,72.5%的依從性閾值即可達到良好的病毒抑制,允許每週漏服藥1至2次藥物。這證實了即使存在漏服藥的狀況,含DTG的3DR和2DR仍能提供有效的病毒控制,顯示其藥物寬容度。總體而言,這些發現證明了第二代嵌合酶鏈轉移抑制劑的單錠處方其療效和寬容度,突顯其在現實世界中作為不同依從性患者穩定治療選擇的潛力。

    The treatment of HIV infection requires sustained adherence to antiretroviral therapy (ART) to achieve and maintain viral suppression. Recent advancements have introduced single-tablet regimens (STRs), including three-drug regimens (3DRs) and two-drug regimens (2DRs), to simplify treatment and improve adherence. This thesis analyzes the effectiveness, forgiveness, and adherence of second-generation integrase strand transfer inhibitor (INSTI)-based single-tablet regimens (STRs), particularly focusing on dolutegravir (DTG)-based regimen. The findings reveal that STRs, such as BIC/FTC/TAF, are effective in achieving and maintaining viral suppression in real-world settings. For DTG-based STRs, whether 3DR or 2DR, a population pharmacokinetic analysis was conducted using data from various patient cohorts to evaluate adherence thresholds and the impact of missed doses. An adherence rate of 72.5% for DTG-based regimens is sufficient for viral suppression, even with 1 to 2 missed doses per week. Overall, INSTI based STRs demonstrate good efficacy and forgiveness, highlighting their potential to provide stable treatment for diverse patient profiles in real-world settings.

    Certificate of Approval for Doctoral Dissertation Abstract I 中文摘要 VI Acknowledgments X Table of Contents XI List of Tables XIV List of Figures XV List of Abbreviations XVI Chapter 1. General Introduction 1 1.1. Human Immunodeficiency Virus (HIV) Structure and Function 1 1.2. HIV Treatment 1 1.3. Medication Adherence 7 1.4 Pharmacometrics 13 1.5. Problem Statement 19 1.6. Aims of This Thesis 20 Chapter 2. Outcomes after Switching to BIC/FTC/TAF in Patients with Virological Failure to Protease Inhibitors or Non-Nucleoside Reverse Transcriptase Inhibitors: A Real-World Cohort Study 22 2.1. Abstract 23 2.2. Introduction 24 2.3. Methods 25 2.4. Results 28 2.5. Discussion 31 2.6. Conclusions 34 2.7. References 34 2.8 Tables 39 2.9 Figures 42 Chapter 3. Durability of Single Tablet Regimen for Patients with HIV Infection in Southern Taiwan: Data from a Real-World Setting 44 3.1 Abstract 45 3.2 Background 46 3.3 Methods 47 3.4 Results 50 3.5 Discussion 52 3.6 Conclusion 56 3.7 References 57 3.8 Tables 61 3.9 Figures 65 Chapter 4. Defining Optimal Forgiveness Threshold for Achieving Viral Suppression in Real-World ABC/3TC/DTG Treatment 67 4.1 Abstract 67 4.2 Introduction 68 4.3 Methods 70 4.4 Results 73 4.5 Discussion 76 4.6 Conclusion 79 4.7 References 79 4.8 Tables 83 4.9 Figures. 85 Chapter 5. Evaluating Adherence Cut-off Points for Two-Drug Regimens in HIV Treatment: A Real-World Study of Missed Dose Forgiveness and Viremia 89 5.1 Abstract 89 5.2 Introduction 90 5.3 Methods 91 5.4 Results 95 5.5 Discussion 98 5.6 Conclusion 102 5.7 References 103 5.8 Tables 107 5.9 Figures. 110 Chapter 6. General Conclusion and Future Perspectives 113 6.1. Summary of Studies 113 6.2. Synthesis of findings 114 6.3. Considerations in Pharmacokinetic Modeling 118 6.4. Future work: Genetic Influence 119 6.5. Conclusion 121 References 121 Appendix 1. DTG Population PK Modeling Process in Chapter 4 133 Appendix Figure 1-1. Base Models Tested: Each Sample as a Separate Pharmacokinetic Occasion or Each Subject as a Pharmacokinetic Occasion. 134 Appendix Figure 1-2. Error models tested. 135 Appendix Figure 1-3. Fixed effect parameters and categorical covariates. 136 Appendix Figure 1-4. Fixed effect parameters and continuous covariates. 137 Appendix Figure 1-5. Scatter plots of the relationships between genotypes and DTG AUC0-24 concentrations. 138 Appendix Figure 1-6. Scatter plots of the relationships between genotypes and DTG concentrations at 24 hours. 139 Appendix 2. DTG Population PK Modeling Process in Chapter 5 140 Appendix Figure 2-1. Base Models Tested: Each Sample as a Separate Pharmacokinetic Occasion or Each Subject as a Pharmacokinetic Occasion. 141 Appendix Figure 2-2. Error models tested. 142 Appendix Figure 2-3. Fixed effect parameters and categorical covariates. 143 Appendix Figure 2-4. Fixed effect parameters and continuous covariates. 144 Appendix Figure 2-5. Scatter plots of the relationships between genotypes and DTG AUC0-24 concentrations. 145 Appendix Figure 2-6. Scatter plots of the relationships between genotypes and DTG concentrations at 24 hours. 146

    1. Clapham, P.R.; McKnight, Á. Cell surface receptors, virus entry and tropism of primate lentiviruses. J Gen Virol 83(Pt 8):1809–29; 2002. Doi: 10.1099/0022-1317-83-8-1809.
    2. Steffen, I.; Pöhlmann, S. Peptide-based inhibitors of the HIV envelope protein and other class I viral fusion proteins. Curr Pharm Des 16(9):1143–58; 2010. Doi: 10.2174/138161210790963751.
    3. Günthard, H.F.; Calvez, V.; Paredes, R.; et al. Human Immunodeficiency Virus Drug Resistance: 2018 Recommendations of the International Antiviral Society-USA Panel. Clin Infect Dis 68(2):177–87; 2019. Doi: 10.1093/cid/ciy463.
    4. Kelly, S.G.; Masters, M.C.; Taiwo, B.O. Initial Antiretroviral Therapy in an Integrase Inhibitor Era. Infectious Disease Clinics of North America 33(3):681–92; 2019. Doi: 10.1016/j.idc.2019.05.003.
    5. Ambrosioni, J.; Levi, L.; Alagaratnam, J.; et al. Major revision version 12.0 of the European AIDS Clinical Society guidelines 2023. HIV Medicine 24(11):1126–36; 2023. Doi: 10.1111/hiv.13542.
    6. Krentz, H.B.; Cosman, I.; Lee, K.; et al. Pill Burden in HIV Infection: 20 Years of Experience. Antiviral Therapy 17(5):833–40; 2012. Doi: 10.3851/IMP2076.
    7. Tashima, K.T.; Mitty, J.A. Once-daily therapies for the treatment of HIV infection. Curr HIV/AIDS Rep 3(2):86–92; 2006. Doi: 10.1007/s11904-006-0023-0.
    8. Gallant, J.E.; DeJesus, E.; Arribas, J.R.; et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med 354(3):251–60; 2006. Doi: 10.1056/NEJMoa051871.
    9. Choudhary, M.C.; Mellors, J.W. The transformation of HIV therapy: One pill once a day. Antiviral Therapy 27(2):135965352110623; 2022. Doi: 10.1177/13596535211062396.
    10. Sebaaly, J.C.; Kelley, D. Single-Tablet Regimens for the Treatment of HIV-1 Infection. Ann Pharmacother 51(4):332–44; 2017. Doi: 10.1177/ 1060028016682531.
    11. Gulick, R.M.; Ribaudo, H.J.; Shikuma, C.M.; et al. Triple-nucleoside regimens versus efavirenz-containing regimens for the initial treatment of HIV-1 infection. N Engl J Med 350(18):1850–61; 2004. Doi: 10.1056/NEJMoa031772.
    12. Gibas, K.M.; Kelly, S.G.; Arribas, J.R.; et al. Two-drug regimens for HIV treatment. The Lancet HIV 9(12):e868–83; 2022. Doi: 10.1016/S2352-3018(22)00249-1.
    13. Thornhill, J.P.; Cromarty, B.; Gaddie, J.; et al. Two-drug antiretroviral regimens for HIV. BMJ:e071079; 2023. Doi: 10.1136/bmj-2022-071079.
    14. Pinola, M.; Lazzarin, A.; Antinori, A.; et al. Lopinavir/ritonavir + tenofovir Dual Therapy versus Lopinavir/ritonavir-Based Triple Therapy in HIV-Infected Antiretroviral Naïve Subjects: The Kalead Study. JAA 02(04); 2010. Doi: 10.4172/jaa.1000024.
    15. Taiwo, B.; Zheng, L.; Gallien, S.; et al. Efficacy of a nucleoside-sparing regimen of darunavir/ritonavir plus raltegravir in treatment-naive HIV-1-infected patients (ACTG A5262). AIDS 25(17):2113–22; 2011.Doi:10.1097/QAD.0b013e32834bbaa9.
    16. Cahn, P.; Sierra Madero, J.; Arribas, J.R.; et al. Three-year durable efficacy of dolutegravir plus lamivudine in antiretroviral therapy - naive adults with HIV-1 infection. AIDS 36(1):39–48; 2022. Doi: 10.1097/QAD.0000000000003070.
    17. Osiyemi, O.; De Wit, S.; Ajana, F.; et al. Efficacy and Safety of Switching to Dolutegravir/Lamivudine Versus Continuing a Tenofovir Alafenamide-Based 3- or 4-Drug Regimen for Maintenance of Virologic Suppression in Adults Living With Human Immunodeficiency Virus Type 1: Results Through Week 144 From the Phase 3, Noninferiority TANGO Randomized Trial. Clin Infect Dis 75(6):975–86; 2022. Doi: 10.1093/cid/ciac036.
    18. van Wyk, J.; Orkin, C.; Rubio, R.; et al. Brief Report: Durable Suppression and Low Rate of Virologic Failure 3 Years After Switch to Dolutegravir + Rilpivirine 2-Drug Regimen: 148-Week Results From the SWORD-1 and SWORD-2 Randomized Clinical Trials. J Acquir Immune Defic Syndr 85(3):325–30; 2020. Doi: 10.1097/QAI.0000000000002449.
    19. Perez-Molina, J.A.; Rubio, R.; Rivero, A.; et al. Simplification to dual therapy (atazanavir/ritonavir + lamivudine) versus standard triple therapy [atazanavir/ritonavir  + two nucleos(t)ides] in virologically stable patients on antiretroviral therapy: 96 week results from an open-label, non-inferiority, randomized clinical trial (SALT study). J Antimicrob Chemother 72(1):246–53; 2017. Doi: 10.1093/jac/dkw379.
    20. Jaeger, H.; Overton, E.T.; Richmond, G.; et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 96-week results: a randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet HIV 8(11):e679–89; 2021. Doi: 10.1016/S2352-3018(21)00185-5.
    21. Cahn, P.; Madero, J.S.; Arribas, J.R.; et al. Durable Efficacy of Dolutegravir Plus Lamivudine in Antiretroviral Treatment-Naive Adults With HIV-1 Infection: 96-Week Results From the GEMINI-1 and GEMINI-2 Randomized Clinical Trials. J Acquir Immune Defic Syndr 83(3):310–8; 2020. Doi: 10.1097/ QAI.0000000000002275.
    22. Llibre, J.M.; Brites, C.; Cheng, C.-Y.; et al. Efficacy and Safety of Switching to the 2-Drug Regimen Dolutegravir/Lamivudine Versus Continuing a 3- or 4-Drug Regimen for Maintaining Virologic Suppression in Adults Living With Human Immunodeficiency Virus 1 (HIV-1): Week 48 Results From the Phase 3, Noninferiority SALSA Randomized Trial. Clin Infect Dis 76(4):720–9; 2023. Doi: 10.1093/cid/ciac130.
    23. Aboud, M.; Orkin, C.; Podzamczer, D.; et al. Efficacy and safety of dolutegravir-rilpivirine for maintenance of virological suppression in adults with HIV-1: 100-week data from the randomised, open-label, phase 3 SWORD-1 and SWORD-2 studies. Lancet HIV 6(9):e576–87; 2019. Doi: 10.1016/ S2352-3018(19)30149-3.
    24. Llibre, J.M.; Hung, C.-C.; Brinson, C.; et al. Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the maintenance of virological suppression in adults with HIV-1: phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies. Lancet 391(10123):839–49; 2018. Doi: 10.1016/S0140-6736(17)33095-7.
    25. Hanna, D.B.; Hessol, N.A.; Golub, E.T.; et al. Increase in single-tablet regimen use and associated improvements in adherence-related outcomes in HIV-infected women. J Acquir Immune Defic Syndr 65(5):587–96; 2014. Doi: 10.1097/ QAI.0000000000000082.
    26. Hines, D.M.; Ding, Y.; Wade, R.L.; et al. Treatment Adherence And Persistence Among HIV-1 Patients Newly Starting Treatment. Patient Prefer Adherence 13:1927–39; 2019. Doi: 10.2147/PPA.S207908.
    27. Hemmige, V.; Flash, C.A.; Carter, J.; et al. Single tablet HIV regimens facilitate virologic suppression and retention in care among treatment naïve patients. AIDS Care 30(8):1017–24; 2018. Doi: 10.1080/09540121.2018.1442554.
    28. Griffith, D.C.; Farmer, C.; Gebo, K.A.; et al. Uptake and virological outcomes of single- versus multi-tablet antiretroviral regimens among treatment-naïve youth in the HIV Research Network. HIV Med 20(2):169–74; 2019. Doi: 10.1111/hiv.12695.
    29. Vrijens, B.; De Geest, S.; Hughes, D.A.; et al. A new taxonomy for describing and defining adherence to medications. Brit J Clinical Pharma 73(5):691–705; 2012. Doi: 10.1111/j.1365-2125.2012.04167.x.
    30. Osterberg, L.; Blaschke, T. Adherence to medication. N Engl J Med 353(5):487–97; 2005. Doi: 10.1056/NEJMra050100.
    31. Anghel, L.A.; Farcas, A.M.; Oprean, R.N. An overview of the common methods used to measure treatment adherence. Med Pharm Rep 92(2):117–22; 2019. Doi: 10.15386/mpr-1201.
    32. Berg, K.M.; Arnsten, J.H. Practical and conceptual challenges in measuring antiretroviral adherence. J Acquir Immune Defic Syndr 43 Suppl 1(Suppl 1):S79-87; 2006. Doi: 10.1097/01.qai.0000248337.97814.66.
    33. Lehmann, A.; Aslani, P.; Ahmed, R.; et al. Assessing medication adherence: options to consider. Int J Clin Pharm 36(1):55–69; 2014. Doi: 10.1007/s11096-013-9865-x.
    34. Mann, S.C.; Castillo-Mancilla, J.R. HIV, aging, and adherence: an update and future directions. Curr Opin HIV AIDS 15(2):134–41; 2020. Doi: 10.1097/ COH.0000000000000615.
    35. Fabbiani, M.; Di Giambenedetto, S.; Cingolani, A.; et al. Relationship between self-reported adherence, antiretroviral drug concentration measurement and self-reported symptoms in patients treated for HIV-1 infection. Infect Dis (Lond) 48(1):48–55; 2016. Doi: 10.3109/23744235.2015.1082034.
    36. Vrijens, B.; Urquhart, J. Methods for measuring, enhancing, and accounting for medication adherence in clinical trials. Clin Pharmacol Ther 95(6):617–26; 2014. Doi: 10.1038/clpt.2014.59.
    37. Podsadecki, T.J.; Vrijens, B.C.; Tousset, E.P.; et al. “White coat compliance” limits the reliability of therapeutic drug monitoring in HIV-1-infected patients. HIV Clin Trials 9(4):238–46; 2008. Doi: 2016033103030300503.
    38. Shubber, Z.; Mills, E.J.; Nachega, J.B.; et al. Patient-Reported Barriers to Adherence to Antiretroviral Therapy: A Systematic Review and Meta-Analysis. PLoS Med 13(11):e1002183; 2016. Doi: 10.1371/journal.pmed.1002183.
    39. Walsh, J.C.; Mandalia, S.; Gazzard, B.G. Responses to a 1 month self-report on adherence to antiretroviral therapy are consistent with electronic data and virological treatment outcome. AIDS 16(2):269; 2002. Doi: 10.1097/ 00002030-200201250-00017.
    40. van Onzenoort, H.A.W.; Verberk, W.J.; Kessels, A.G.H.; et al. Assessing medication adherence simultaneously by electronic monitoring and pill count in patients with mild-to-moderate hypertension. Am J Hypertens 23(2):149–54; 2010. Doi: 10.1038/ajh.2009.207.
    41. Vik, S.A.; Maxwell, C.J.; Hogan, D.B. Measurement, correlates, and health outcomes of medication adherence among seniors. Ann Pharmacother 38(2):303–12; 2004. Doi: 10.1345/aph.1D252.
    42. Vink, N.M.; Klungel, O.H.; Stolk, R.P.; et al. Comparison of various measures for assessing medication refill adherence using prescription data. Pharmacoepidemiol Drug Saf 18(2):159–65; 2009. Doi: 10.1002/pds.1698.
    43. Watanabe, J.H.; Bounthavong, M.; Chen, T. Revisiting the medication possession ratio threshold for adherence in lipid management. Curr Med Res Opin 29(3):175–80; 2013. Doi: 10.1185/03007995.2013.766164.
    44. Byrd, K.K.; Hou, J.G.; Hazen, R.; et al. Antiretroviral Adherence Level Necessary for HIV Viral Suppression Using Real-World Data. J Acquir Immune Defic Syndr 82(3):245–51; 2019. Doi: 10.1097/QAI.0000000000002142.
    45. Haberer, J.E.; Kahane, J.; Kigozi, I.; et al. Real-time adherence monitoring for HIV antiretroviral therapy. AIDS Behav 14(6):1340–6; 2010. Doi: 10.1007/ s10461-010-9799-4.
    46. Haberer, J.E.; Robbins, G.K.; Ybarra, M.; et al. Real-time electronic adherence monitoring is feasible, comparable to unannounced pill counts, and acceptable. AIDS Behav 16(2):375–82; 2012. Doi: 10.1007/s10461-011-9933-y.
    47. Goodman, G.R.; Vaz, C.; Albrechta, H.; et al. Ingestible Electronic Sensors for Monitoring Real-time Adherence to HIV Pre-exposure Prophylaxis and Antiretroviral Therapy. Curr HIV/AIDS Rep 19(5):433–45; 2022. Doi: 10.1007/s11904-022-00625-x.
    48. Paterson, D.L.; Swindells, S.; Mohr, J.; et al. Adherence to Protease Inhibitor Therapy and Outcomes in Patients with HIV Infection. Ann Intern Med 133(1):21; 2000. Doi: 10.7326/0003-4819-133-1-200007040-00004.
    49. Martin, M.; Del Cacho, E.; Codina, C.; et al. Relationship between Adherence Level, Type of the Antiretroviral Regimen, and Plasma HIV Type 1 RNA Viral Load: A Prospective Cohort Study. AIDS Research and Human Retroviruses 24(10):1263–8; 2008. Doi: 10.1089/aid.2008.0141.
    50. Urquhart, J. The Electronic Medication Event Monitor: Lessons for Pharmacotherapy. Clinical Pharmacokinetics 32(5):345–56; 1997. Doi: 10.2165/00003088-199732050 -00001.
    51. Morrison, A.; Stauffer, M.E.; Kaufman, A.S. Relationship Between Adherence Rate Threshold and Drug ‘Forgiveness.’ Clin Pharmacokinet 56(12):1435–40; 2017. Doi: 10.1007/s40262-017-0552-2.
    52. Cohen, C.J.; Colson, A.E.; Sheble-Hall, A.G.; et al. Pilot study of a novel short-cycle antiretroviral treatment interruption strategy: 48-week results of the five-days-on, two-days-off (FOTO) study. HIV Clin Trials 8(1):19–23; 2007. Doi: 2016033103045900325.
    53. Ette, E.I.; Williams, P.J. Pharmacometrics: The Science of Quantitative Pharmacology. Wiley-Interscience.; 2013.
    54. Barrett, J.S.; Fossler, M.J.; Cadieu, K.D.; et al. Pharmacometrics: a multidisciplinary field to facilitate critical thinking in drug development and translational research settings. J Clin Pharmacol 48(5):632–49; 2008. Doi: 10.1177/0091270008315318.
    55. Southwood, R.; Fleming, V.H.; Huckaby, G. Concepts in Clinical Pharmacokinetics, 7th Edition. Bethesda, MD. 2018.
    56. Office of Training and Communications Division of Communications Management Drug Information Branch. Food and Drug Administration, HHS.; 1999.
    57. Huang, S.-M.; Lertora, J.J.L.; Vicini, P.; et al. Atkinson’s Principles of Clinical Pharmacology. Academic Press.; 2021.
    58. Owen, J.S.; Fiedler‐Kelly, J. Introduction to Population Pharmacokinetic / Pharmacodynamic Analysis with Nonlinear Mixed Effects Models. 1st ed. Wiley.; 2014.
    59. Mould, D.; Upton, R. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development. CPT: Pharmacometrics & Systems Pharmacology 1(9):6; 2012. Doi: 10.1038/psp.2012.4.
    60. Yafune, A.; Ishiguro, M. Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: A use of bootstrap standard error. Stat Med 18(5):581–99; 1999. Doi: 10.1002/(sici)1097-0258(19990315)18:5 <581::aid-sim47>3.0.co;2-1.
    61. Podany, A.T.; Scarsi, K.K.; Fletcher, C.V. Comparative Clinical Pharmacokinetics and Pharmacodynamics of HIV-1 Integrase Strand Transfer Inhibitors. Clin Pharmacokinet 56(1):25–40; 2017. Doi: 10.1007/s40262-016-0424-1.
    62. Nance, R.M.; Delaney, J.A.C.; Simoni, J.M.; et al. HIV Viral Suppression Trends Over Time Among HIV-Infected Patients Receiving Care in the United States, 1997 to 2015: A Cohort Study. Ann Intern Med 169(6):376–84; 2018. Doi: 10.7326/M17-2242.
    63. Yang, L.-L.; Li, Q.; Zhou, L.-B.; et al. Meta-analysis and systematic review of the efficacy and resistance for human immunodeficiency virus type 1 integrase strand transfer inhibitors. Int J Antimicrob Agents 54(5):547–55; 2019. Doi: 10.1016/j.ijantimicag.2019.08.008.
    64. Clay, P.G.; Yuet, W.C.; Moecklinghoff, C.H.; et al. A meta-analysis comparing 48-week treatment outcomes of single and multi-tablet antiretroviral regimens for the treatment of people living with HIV. AIDS Res Ther 15(1):17; 2018. Doi: 10.1186/s12981-018-0204-0.
    65. Skwara, P.; Bociąga-Jasik, M.; Kalinowska-Nowak, A.; et al. Adherence to single-tablet versus multiple-tablet regimens in the treatment of HIV infection—A questionnaire-based survey on patients satisfaction. HIV & AIDS Review 13(3):95–9; 2014. Doi: 10.1016/j.hivar.2014.05.001.
    66. McComsey, G.A.; Lingohr-Smith, M.; Rogers, R.; et al. Real-World Adherence to Antiretroviral Therapy Among HIV-1 Patients Across the United States. Adv Ther 38(9):4961–74; 2021. Doi: 10.1007/s12325-021-01883-8.
    67. Hansen, R.A.; Kim, M.M.; Song, L.; et al. Comparison of methods to assess medication adherence and classify nonadherence. Ann Pharmacother 43(3):413–22; 2009. Doi: 10.1345/aph.1L496.
    68. van Lunzen, J.; Maggiolo, F.; Arribas, J.R.; et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect Dis 12(2):111–8; 2012. Doi: 10.1016/S1473-3099(11)70290-0.
    69. Stover, S.; Milloy, M.-J.; Grant, C.; et al. Estimating the minimum antiretroviral adherence required for plasma HIV-1 RNA viral load suppression among people living with HIV who use unregulated drugs. AIDS 36(9):1233–43; 2022. Doi: 10.1097/QAD.0000000000003234.
    70. Reese, M.J.; Savina, P.M.; Generaux, G.T.; et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos 41(2):353–61; 2013. Doi: 10.1124/dmd.112.048918.
    71. Cottrell, M.L.; Hadzic, T.; Kashuba, A.D.M. Clinical pharmacokinetic, pharmacodynamic and drug-interaction profile of the integrase inhibitor dolutegravir. Clin Pharmacokinet 52(11):981–94; 2013. Doi: 10.1007/s40262-013-0093-2.
    72. Chen, S.; St Jean, P.; Borland, J.; et al. Evaluation of the effect of UGT1A1 polymorphisms on dolutegravir pharmacokinetics. Pharmacogenomics 15(1):9–16; 2014. Doi: 10.2217/pgs.13.190.
    73. Yagura, H.; Watanabe, D.; Kushida, H.; et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect Dis 17(1):622; 2017. Doi: 10.1186/s12879-017-2717-x.
    74. Tsuchiya, K.; Hayashida, T.; Hamada, A.; et al. High plasma concentrations of dolutegravir in patients with ABCG2 genetic variants. Pharmacogenet Genomics 27(11):416–9; 2017. Doi: 10.1097/FPC.0000000000000308.
    75. Sugatani, J.; Uchida, T.; Kurosawa, M.; et al. Regulation of pregnane X receptor (PXR) function and UGT1A1 gene expression by posttranslational modification of PXR protein. Drug Metab Dispos 40(10):2031–40; 2012. Doi: 10.1124/dmd.112.046748.
    76. Siccardi, M.; D’Avolio, A.; Baietto, L.; et al. Association of a single-nucleotide polymorphism in the pregnane X receptor (PXR 63396C-->T) with reduced concentrations of unboosted atazanavir. Clin Infect Dis 47(9):1222–5; 2008. Doi: 10.1086/592304.
    77. Schipani, A.; Siccardi, M.; D’Avolio, A.; et al. Population pharmacokinetic modeling of the association between 63396C->T pregnane X receptor polymorphism and unboosted atazanavir clearance. Antimicrob Agents Chemother 54(12):5242–50; 2010. Doi: 10.1128/AAC.00781-10.
    78. Elliot, E.R.; Neary, M.; Else, L.; et al. Genetic influence of ABCG2, UGT1A1 and NR1I2 on dolutegravir plasma pharmacokinetics. Journal of Antimicrobial Chemotherapy 75(5):1259–66; 2020. Doi: 10.1093/jac/dkz558.
    79. Li, Y.; Buckley, D.; Wang, S.; et al. Genetic Polymorphisms in the TATA Box and Upstream Phenobarbital-Responsive Enhancer Module of the UGT1A1 Promoter Have Combined Effects on UDP-Glucuronosyltransferase 1A1 Transcription Mediated by Constitutive Androstane Receptor, Pregnane X Receptor, or Glucocorticoid Receptor in Human Liver. Drug Metab Dispos 37(9):1978–86; 2009. Doi: 10.1124/dmd.109.027409.

    無法下載圖示 校內:2029-08-19公開
    校外:2029-08-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE