簡易檢索 / 詳目顯示

研究生: 陳昕
Chen, Hsin
論文名稱: 利用串聯式質譜儀搭配多重反應監測模式和標準添加法定量血清蛋白中的雌激素化修飾
Quantification of Catechol Estrogen Modification on Serum Proteins by Multiple Reaction Monitoring and Standard Addition Using Liquid Chromatography-Mass Spectrometry
指導教授: 陳淑慧
Chen, Shu-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 77
中文關鍵詞: 雌激素化人類血清白蛋白標準添加法多重反應監測模式
外文關鍵詞: Estrogenized Human Serum Albumin, Standard Addition Method, Multiple Reaction Monitoring (MRM)
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   雌性荷爾蒙在生理體中的失衡常會造成許多疾病的發生,在文獻中也指出雌激素代謝物如醌化兒茶酚雌激素(CE-Qs)已被發現會與半胱胺酸、離胺酸、組胺酸形成共價性鍵結,而這些複合物也被認為是某些癌症的開端相關。雌激素代謝物與血清白蛋白形成雌激素化修飾蛋白質,利用標準添加法(Standard Addition Method)與多重反應監測模式(MRM/SRM transitions)的質譜分析方法達到鑑定以及定量血清中微量雌激素化修飾蛋白質。
      經4-羥基雌二醇(4-OHE2)活化後的血清當作標準品。透過由上而下(Top Down)的完整蛋白分析,可以得到4-羥基雌二醇修飾在血清白蛋白上的數量;透過由下而上(Bottom Up)分析酵素水解後的胜肽,可以觀察到4-羥基雌二醇修飾在血清白蛋白上的位點。選擇三段分別含C58,K44,與K402修飾位點之胜肽發展多重反應監測模式經由參數設定可以在一次分析中,分析多個雌激素化修飾胜肽的前驅離子訊號,透過雌激素化修飾比率(Estrogenzied Ratio, ER)方程式,可以了解每段胜肽與雌激素共價鍵結的程度。
    ER=((Intensity of modified ion))/[(Intensity of non-modified ion)+(Intensity of modified ion)] ×100%

      微量的雌激素修飾蛋白無法精準的直接量測到,是因為濃度低於質譜儀的偵測極限,故透過標準添加法的方式,添加已知數量的標準品進入血清樣品中,可看出ER值隨著添加活化血清的量增加由約0.02%增加至2.32% ,呈現很好的線性增加關係,證明該修飾偵側訊號來自雌激素修飾。
      此外,每一添加點的ER值三重複的標準偏差(RSD)含未添加點分別為44-76% (C58),24-64% (K44), 與39-73% (K402),未添加點之RSD均落於平均值附近,且標準偏差值與平均值並無絕對關係。藉由線性回歸方程式的計算,回推出樣品中每段胜肽的內生性的雌激素化修飾比率與未添加之結果在RSD上亦無太大差異。顯示蛋白MRM方式的變異有待改進。但針對7位病人血清做定量,ER值在<100% RSD範圍內,對病人內生含量高低有一致性關係,約略是正常者的2~5倍。顯示本方法能用於血液內雌激素化修飾比率,經由定量血清樣品中的雌激素化修飾比率,有助於醫療上判斷雌性荷爾蒙失調造成的疾病的發病機制或是診斷依據。

    Estrogens and their metabolites play key roles in many aspects of a woman’s health and diseases. Traditional methods used for estrogen quantification such as radioimmunoassay (RIAs) or electro chemiluminescence immuneassay (ECLIAs) have drawbacks in cross reactivity of antibodies used for the detection and fluctuation of hormone depending on the period of menstruation. In this study, a LC-MS based quantification method for catechol estrogens (CEs) in bloods was developed based on multiple reaction mode (MRM). Instead of free estrogen molecules, this method was established based on the detection of CEs-adducted serum proteins and proteomics techniques including sample preparation to yield digested peptides. Standard addition method was also applied to confirm the established method.
    The collected serum samples were cleaned up by precipitation of trichloroacetic acid, digested by chymotrypsin. Three precursor peptides covering modification sites on C58 (sequence, m/z=778.54, z=3), K402 (sequence, m/z=1002.65, z=2), and K44 (sequence, m/z=632.71, z=2) of human serum albumin were chosen to develop the MRM transitions for quantification. Three product ions were chosen for each precursor ion. Moreover, three transitions for each non-modified peptide of the same sequence were also included in MRM method. This resulted in a total of 18 transitions (nine for modified and non-modified, respectively) in MRM method development. Estrogenized ratios were calculated as the ratio of sum of three transition intensity or area divided by the total sum of three transitions from both modified and non-modified precursors (equation). Standard addition method was further conducted by spiking different concentrations of in-vitro modified human serum albumin ranging from 0.02% to 2.32% into the serum samples. The data show good linearity (R2>0.95) with a relative standard deviation ranging from 27.0%- 81.4% based on three replicates. The method was then applied to quantify ER in seven collected serums.

    The method was applied to detect ER in serums derived from one normal individual and six patients. The acquired ER values ranging were from 4.20E-05 - 2.35E-03 with RSD ranging from 12%-116%. The ER values of the patient are generally larger than that of the only normal one. A large scale quantification on more patients will be conducted based on the method developed in this study.

    第一章 緒論 1 1.1 雌激素簡介 1 1.2 定量女性體中的雌激素 3 1.3 肥胖與雌激素的關聯 4 1.4 人類血清白蛋白 5 1.5 蛋白體學 6 1.5.1 質譜胜肽定序與蛋白質身分鑑定 6 1.5.2 Deconvoluted 8 1.5.3 蛋白質加成物之分析 9 1.5.4 使用質譜進行定量分析 10 1.5.5 定量轉譯後修飾蛋白質 15 1.5.6 利用目標胜肽來定量蛋白質 16 1.6 質譜儀 17 1.6.1 質譜儀簡介 17 1.6.2 線性離子阱/軌道阱串聯式質譜儀(LIT/Orbitrap) 19 1.6.3 串聯質譜的掃描分析模式 20 1.6.4 多重反應監測 21 1.6.5 質譜技術應用於代謝體分析 23 第二章 實驗方法 24 2.1 實驗藥品 24 2.2 實驗耗材及儀器 25 2.3 實驗步驟 26 2.3.1 血液檢體 26 2.3.2 蛋白質定量 26 2.3.3 雌激素化血清樣品 27 2.3.4 蛋白質水解 27 2.3.5 蛋白質定量 - 標準添加法 28 2.3.6 飛行式串聯式質譜儀分析 28 2.3.7 奈升級超效能液相層析串聯式質譜儀分析 29 2.3.8 數據依據型質譜方法設定 29 2.3.9 資料庫數據分析 30 第三章 結果與討論 31 3.1 完整蛋白質分析 31 3.2 由下而上的蛋白質分析 34 3.2.1 複雜樣品前處理的改善 34 3.2.2 雌激素化修飾位點 36 3.3 多重反應監測模式參數設定 38 3.4 胰凝乳蛋白酶確認修飾位點 45 3.5 多重反應監測模式結果 47 3.5.1 設定多重反應監測模式C58胜肽的參數 47 3.5.2 設定多重反應監測模式K44胜肽的參數 52 3.5.3 設定多重反應監測模式K402胜肽的參數 56 3.6 蛋白質定量 標準添加法 60 3.6.1 添加樣品之定量偵測 60 3.6.2 標準添加用於定量未添加內生血清之修飾比率 62 3.6.3 病人樣品在不同修飾位點之ER值比較 65 3.7 樣品前處理優化-蛋白質沉澱法 67 第四章 結論 68 第五章 參考文獻 69 第六章 附錄 74

    1. (a) Chen, Y.; Liu, X.; Pisha, E.; Constantinou, A. I.; Hua, Y.; Shen, L.; van Breemen, R. B.; Elguindi, E. C.; Blond, S. Y.; Zhang, F.; Bolton, J. L., A metabolite of equine estrogens, 4-hydroxyequilenin, induces DNA damage and apoptosis in breast cancer cell lines. Chemical research in toxicology 2000, 13 (5), 342-50; (b) Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J., Role of quinones in toxicology. Chemical research in toxicology 2000, 13 (3), 135-60.
    2. Liehr, J. G., Is estradiol a genotoxic mutagenic carcinogen? Endocrine reviews 2000, 21 (1), 40-54.
    3. Dowsett, M.; Folkerd, E., Deficits in plasma oestradiol measurement in studies and management of breast cancer. Breast cancer research : BCR 2005, 7 (1), 1-4.
    4. Boyd, N.; Martin, L.; Gunasekara, A.; Melnichouk, O.; Maudsley, G.; Peressotti, C.; Yaffe, M.; Minkin, S., Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2009, 18 (6), 1754-62.
    5. Chen, Z.; Arendell, L.; Aickin, M.; Cauley, J.; Lewis, C. E.; Chlebowski, R.; Women's Health Initiative Program, N. H. L.; Blood Institute, U. S. D. o. H.; Human, S., Hip bone density predicts breast cancer risk independently of Gail score: results from the Women's Health Initiative. Cancer 2008, 113 (5), 907-15.
    6. Cleary, M. P.; Grossmann, M. E., Minireview: Obesity and breast cancer: the estrogen connection. Endocrinology 2009, 150 (6), 2537-42.
    7. Santen, R. J.; Boyd, N. F.; Chlebowski, R. T.; Cummings, S.; Cuzick, J.; Dowsett, M.; Easton, D.; Forbes, J. F.; Key, T.; Hankinson, S. E.; Howell, A.; Ingle, J.; Breast Cancer Prevention Collaborative, G., Critical assessment of new risk factors for breast cancer: considerations for development of an improved risk prediction model. Endocrine-related cancer 2007, 14 (2), 169-87.
    8. McShane, L. M.; Dorgan, J. F.; Greenhut, S.; Damato, J. J., Reliability and validity of serum sex hormone measurements. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 1996, 5 (11), 923-8.
    9. Bansal, S.; DeStefano, A., Key elements of bioanalytical method validation for small molecules. The AAPS journal 2007, 9 (1), E109-14.
    10. Kushnir, M. M.; Rockwood, A. L.; Bergquist, J.; Varshavsky, M.; Roberts, W. L.; Yue, B.; Bunker, A. M.; Meikle, A. W., High-sensitivity tandem mass spectrometry assay for serum estrone and estradiol. American journal of clinical pathology 2008, 129 (4), 530-9.
    11. Longcope, C.; Hui, S. L.; Johnston, C. C., Jr., Free estradiol, free testosterone, and sex hormone-binding globulin in perimenopausal women. The Journal of clinical endocrinology and metabolism 1987, 64 (3), 513-8.
    12. Rinaldi, S.; Geay, A.; Dechaud, H.; Biessy, C.; Zeleniuch-Jacquotte, A.; Akhmedkhanov, A.; Shore, R. E.; Riboli, E.; Toniolo, P.; Kaaks, R., Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2002, 11 (10 Pt 1), 1065-71.
    13. Stanczyk, F. Z.; Cho, M. M.; Endres, D. B.; Morrison, J. L.; Patel, S.; Paulson, R. J., Limitations of direct estradiol and testosterone immunoassay kits. Steroids 2003, 68 (14), 1173-8.
    14. Santen, R. J.; Demers, L.; Ohorodnik, S.; Settlage, J.; Langecker, P.; Blanchett, D.; Goss, P. E.; Wang, S., Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids 2007, 72 (8), 666-71.
    15. (a) Rinaldi, S.; Dechaud, H.; Toniolo, P.; Kaaks, R., Reliability and validity of direct radioimmunoassays for measurement of postmenopausal serum androgens and estrogens. IARC scientific publications 2002, 156, 323-5; (b) Lee, J. S.; Ettinger, B.; Stanczyk, F. Z.; Vittinghoff, E.; Hanes, V.; Cauley, J. A.; Chandler, W.; Settlage, J.; Beattie, M. S.; Folkerd, E.; Dowsett, M.; Grady, D.; Cummings, S. R., Comparison of methods to measure low serum estradiol levels in postmenopausal women. The Journal of clinical endocrinology and metabolism 2006, 91 (10), 3791-7; (c) Hsing, A. W.; Stanczyk, F. Z.; Belanger, A.; Schroeder, P.; Chang, L.; Falk, R. T.; Fears, T. R., Reproducibility of serum sex steroid assays in men by RIA and mass spectrometry. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2007, 16 (5), 1004-8.
    16. Geisler, J.; Ekse, D.; Helle, H.; Duong, N. K.; Lonning, P. E., An optimised, highly sensitive radioimmunoassay for the simultaneous measurement of estrone, estradiol and estrone sulfate in the ultra-low range in human plasma samples. The Journal of steroid biochemistry and molecular biology 2008, 109 (1-2), 90-5.
    17. Oe, T.; Ackermann, B. L.; Inoue, K.; Berna, M. J.; Garner, C. O.; Gelfanova, V.; Dean, R. A.; Siemers, E. R.; Holtzman, D. M.; Farlow, M. R.; Blair, I. A., Quantitative analysis of amyloid beta peptides in cerebrospinal fluid of Alzheimer's disease patients by immunoaffinity purification and stable isotope dilution liquid chromatography/negative electrospray ionization tandem mass spectrometry. Rapid communications in mass spectrometry : RCM 2006, 20 (24), 3723-35.
    18. Yamashita, K.; Okuyama, M.; Watanabe, Y.; Honma, S.; Kobayashi, S.; Numazawa, M., Highly sensitive determination of estrone and estradiol in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry. Steroids 2007, 72 (11-12), 819-27.
    19. Lorincz, A. M.; Sukumar, S., Molecular links between obesity and breast cancer. Endocrine-related cancer 2006, 13 (2), 279-92.
    20. Tilg, H.; Moschen, A. R., Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature reviews. Immunology 2006, 6 (10), 772-83.
    21. Lee, P.; Wu, X., Review: modifications of human serum albumin and their binding effect. Current pharmaceutical design 2015, 21 (14), 1862-5.
    22. He, X. M.; Carter, D. C., Atomic structure and chemistry of human serum albumin. Nature 1992, 358 (6383), 209-15.
    23. Spiro, R. G., Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 2002, 12 (4), 43R-56R.
    24. Bar-Or, R.; Rael, L. T.; Bar-Or, D., Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin. Rapid communications in mass spectrometry : RCM 2008, 22 (5), 711-6.
    25. Gaston, B. M.; Carver, J.; Doctor, A.; Palmer, L. A., S-nitrosylation signaling in cell biology. Molecular interventions 2003, 3 (5), 253-63.
    26. Ishima, Y.; Hoshino, H.; Shinagawa, T.; Watanabe, K.; Akaike, T.; Sawa, T.; Kragh-Hansen, U.; Kai, T.; Watanabe, H.; Maruyama, T.; Otagiri, M., S-guanylation of human serum albumin is a unique posttranslational modification and results in a novel class of antibacterial agents. Journal of pharmaceutical sciences 2012, 101 (9), 3222-9.
    27. (a) Burnette, W. N., "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical biochemistry 1981, 112 (2), 195-203; (b) Towbin, H.; Staehelin, T.; Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 1979, 76 (9), 4350-4.
    28. (a) Cox, J.; Mann, M., Quantitative, high-resolution proteomics for data-driven systems biology. Annual review of biochemistry 2011, 80, 273-99; (b) Gstaiger, M.; Aebersold, R., Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nature reviews. Genetics 2009, 10 (9), 617-27.
    29. Ross, P. L.; Huang, Y. N.; Marchese, J. N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D. J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Molecular & cellular proteomics : MCP 2004, 3 (12), 1154-69.
    30. Ong, S. E.; Blagoev, B.; Kratchmarova, I.; Kristensen, D. B.; Steen, H.; Pandey, A.; Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & cellular proteomics : MCP 2002, 1 (5), 376-86.
    31. Liu, H.; Sadygov, R. G.; Yates, J. R., 3rd, A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical chemistry 2004, 76 (14), 4193-201.
    32. Li, M.; Gray, W.; Zhang, H.; Chung, C. H.; Billheimer, D.; Yarbrough, W. G.; Liebler, D. C.; Shyr, Y.; Slebos, R. J., Comparative shotgun proteomics using spectral count data and quasi-likelihood modeling. Journal of proteome research 2010, 9 (8), 4295-305.
    33. Taylor, P. J., High-performance liquid chromatography-mass spectrometry in the clinical laboratory. Therapeutic drug monitoring 2005, 27 (6), 689-93.
    34. Sherrod, S. D.; Myers, M. V.; Li, M.; Myers, J. S.; Carpenter, K. L.; Maclean, B.; Maccoss, M. J.; Liebler, D. C.; Ham, A. J., Label-free quantitation of protein modifications by pseudo selected reaction monitoring with internal reference peptides. Journal of proteome research 2012, 11 (6), 3467-79.
    35. Choudhary, C.; Mann, M., Decoding signalling networks by mass spectrometry-based proteomics. Nature reviews. Molecular cell biology 2010, 11 (6), 427-39.
    36. (a) Macek, B.; Mann, M.; Olsen, J. V., Global and site-specific quantitative phosphoproteomics: principles and applications. Annual review of pharmacology and toxicology 2009, 49, 199-221; (b) Nita-Lazar, A.; Saito-Benz, H.; White, F. M., Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics 2008, 8 (21), 4433-43; (c) Mertins, P.; Udeshi, N. D.; Clauser, K. R.; Mani, D. R.; Patel, J.; Ong, S. E.; Jaffe, J. D.; Carr, S. A., iTRAQ labeling is superior to mTRAQ for quantitative global proteomics and phosphoproteomics. Molecular & cellular proteomics : MCP 2012, 11 (6), M111 014423.
    37. Dunn, J. D.; Reid, G. E.; Bruening, M. L., Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass spectrometry reviews 2010, 29 (1), 29-54.
    38. (a) Lange, V.; Picotti, P.; Domon, B.; Aebersold, R., Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular systems biology 2008, 4, 222; (b) Picotti, P.; Aebersold, R., Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nature methods 2012, 9 (6), 555-66; (c) Gallien, S.; Duriez, E.; Domon, B., Selected reaction monitoring applied to proteomics. Journal of mass spectrometry : JMS 2011, 46 (3), 298-312.
    39. Anderson, L.; Hunter, C. L., Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular & cellular proteomics : MCP 2006, 5 (4), 573-88.
    40. Keshishian, H.; Addona, T.; Burgess, M.; Mani, D. R.; Shi, X.; Kuhn, E.; Sabatine, M. S.; Gerszten, R. E.; Carr, S. A., Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Molecular & cellular proteomics : MCP 2009, 8 (10), 2339-49.
    41. Schoenherr, R. M.; Whiteaker, J. R.; Zhao, L.; Ivey, R. G.; Trute, M.; Kennedy, J.; Voytovich, U. J.; Yan, P.; Lin, C.; Paulovich, A. G., Multiplexed quantification of estrogen receptor and HER2/Neu in tissue and cell lysates by peptide immunoaffinity enrichment mass spectrometry. Proteomics 2012, 12 (8), 1253-60.
    42. Desiderio, D. M.; Kai, M., Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomedical mass spectrometry 1983, 10 (8), 471-9.
    43. Gerber, S. A.; Rush, J.; Stemman, O.; Kirschner, M. W.; Gygi, S. P., Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (12), 6940-5.
    44. Janas, M. M.; Wang, B.; Harris, A. S.; Aguiar, M.; Shaffer, J. M.; Subrahmanyam, Y. V.; Behlke, M. A.; Wucherpfennig, K. W.; Gygi, S. P.; Gagnon, E.; Novina, C. D., Alternative RISC assembly: binding and repression of microRNA-mRNA duplexes by human Ago proteins. Rna 2012, 18 (11), 2041-55.
    45. Bennett, E. J.; Rush, J.; Gygi, S. P.; Harper, J. W., Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010, 143 (6), 951-65.
    46. Tomazela, D. M.; Patterson, B. W.; Hanson, E.; Spence, K. L.; Kanion, T. B.; Salinger, D. H.; Vicini, P.; Barret, H.; Heins, H. B.; Cole, F. S.; Hamvas, A.; MacCoss, M. J., Measurement of human surfactant protein-B turnover in vivo from tracheal aspirates using targeted proteomics. Analytical chemistry 2010, 82 (6), 2561-7.
    47. Olsen, J. V.; de Godoy, L. M.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M., Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular & cellular proteomics : MCP 2005, 4 (12), 2010-21.
    48. Fang, C. M.; Ku, M. C.; Chang, C. K.; Liang, H. C.; Wang, T. F.; Wu, C. H.; Chen, S. H., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological sciences : an official journal of the Society of Toxicology 2015, 148 (2), 433-42.

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE