簡易檢索 / 詳目顯示

研究生: 范銘欣
Fan, Ming-Hsin
論文名稱: 負型鹼性水溶液顯影感光性聚亞醯胺材料之研究
Negative-working Aqueous Base Developable Photosensitive Polyimide
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 129
中文關鍵詞: 感光性聚亞醯胺
外文關鍵詞: photosensitive, polyimide
相關次數: 點閱:50下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用Pyromellitic dianhydride (PMDA)二酸酐單體和2,2-Bis-(3-amino-4-hydroxyphenyl) hexafluoropropane (BisAPAF)二胺單體或4,4-Diaminodiphenyl ether (4,4-ODA)二胺單體以及2-hydroxyethyl methacrylate (HEMA)等反應物,三種不同結構的聚醯胺酯(polyamic ester;PAE)成功地被合成。由於這些樹脂在懸掛(pendant)位置上含有壓克力系感光基團,因此可當作負型感光性聚亞醯胺(photosensitive polyimide;PSPI)之前驅物(precursor)的交聯點(linkage),而phenolic hydroxyl groups則可使未曝光的前驅物溶於鹼性水溶液顯影液。如此即可製作成負型鹼性水溶液顯影感光性聚亞醯胺。這些樹脂是以phenyl phosphonic dichloride為活化劑,採用direct polymerization的合成方法,得到固有黏度(inherent viscosity)為0.15~0.38(dL/g)的聚醯胺酯,其結構可由FTIR及1H-NMR圖譜得到鑑定。
    亞醯胺化後之三種不同結構的聚亞醯胺可藉由ODA二胺單體比例的增加來提高其熱安定性與恆溫耐熱性,而且三者亦表現出絕佳的耐化學藥品性。
    為了提高負型感光性聚亞醯胺的光阻特性,一些感光添加劑如:增感劑(sensitizer)、光起始劑(photoinitiator)及交聯劑(cross-linker)等被加入光阻配方中,其中以MK-TBPS感光系統最能表現出負型感光性聚亞醯胺的光阻特性。將完全顯影時間控制在20~90秒,可以有效成功地將圖案完全轉移,而且線路的解析度也呈現最佳狀態。經由適當控制微影成像(microlithography)參數,三種不同結構的聚醯胺酯光阻配方,其解析度皆可達到10μm左右。此外,感光添加劑、分子量、顯影液濃度以及分子結構等對光敏感度(sensitivity)與對比(contrast)之微影成像特性的影響也一併探討。

    Through molecular design, three polyamic esters have been synthesized from Pyromellitic dianhydride (PMDA), 2,2-Bis-(3-amino- 4-hydroxyphenyl) hexafluoropropane (BisAPAF), 4,4-Diaminodiphenyl ether (4,4’-ODA) and 2-hydroxyethyl methacrylate (HEMA).
    Due to the introduction of photosensitive acrylate groups and aqueous base soluble phenolic hydroxyl groups in the backbone, these polyamic esters can be used as the precursors of negative-working aqueous base developable photosensitive polyimides (PSPI).
    These polyamic esters were prepared by direct polymerization by using phenyl phosphonic dichloride (PPD) as an activator. The inherent viscosities of these polymers ranged from 0.15 to 0.38 (dL/g). Their structures were characterized by Fourier transform infrared spectroscopy (FTIR) and 1H-NMR.
    In order to improve the photolithographic performance of these PSPIs, different photosensitizers, photoinitiators and crosslinkers have been added in the PSPI formulation. Among them, Michler’s ketone (MK) / tribromomethyl phenyl sulfone (TBPS) system gave the best results. Using aqueous TMAH solution as the developer, patterns with a resolution of 10μm were obtained from these PSPI formulations.
    Additionally, the effects of the amount of photosensitizer added, the molecular weight and molecular structure of the precursors, and the concentration of developer on the photosensitivity and contrast of the PSPI formulations were also discussed.

    摘 要...........................................I Abstract........................................III 總 目 錄.........................................IV Scheme 目錄......................................X Table 目錄........................................XI 圖 目 錄.........................................XII 第一章 緒論.......................................1 1-1 前言..........................................1 1-2 感光性聚亞醯胺在IC工業的應用..................3 1-3 研究動機與研究方法............................4 第二章 文獻回顧與原理.............................6 2-1 聚亞醯胺的發展................................6 2-2 聚亞醯胺之亞醯胺化的方法.....................12 2-3 感光性聚亞醯胺的歷史與分類...................14 2-4 微影成像技術(Microlithography)及原理.......19 2-4-1 表面清洗...................................20 2-4-2 塗底.......................................21 2-4-3 上光阻.....................................22 2-4-4 軟烤.......................................23 2-4-5 曝光.......................................24 2-4-6 曝後烤.....................................26 2-4-7 顯影.......................................26 2-4-8 硬烤.......................................26 2-4-9 蝕刻.......................................27 2-4-10 光阻剝除..................................27 2-5 光阻劑.......................................27 2-5-1 光化學反應型...............................27 2-5-2 化學增幅型(Chemical Amplication)...........28 2-6 光源.........................................29 2-7 光阻特性.....................................29 2-7-1 感度(Sensitivity)..........................30 2-7-2 對比(Contrast).............................32 2-7-3 解析度(Resolution).........................34 2-7-4 熱穩定性(Thermal stability)................35 2-7-5 接著性(Adhesion)...........................35 第三章 實驗步驟..................................36 3-1 實驗用藥品與儀器.............................36 3-1-1 藥品.......................................36 3-1-2 實驗儀器...................................38 3-2 單體的純化...................................39 3-2-1 二酸酐之純化...............................39 3-3 聚亞醯胺樹酯前驅物-聚醯胺酯的合成............40 3-3-1 PMDA-BisAPAF-HEMA PAE的合成方法............40 3-3-2 PMDA-BisAPAF-ODA-HEMA PAE的合成方法........43 3-3-3 聚亞醯胺薄膜的製備.........................45 3-4 結構鑑定與分析...............................47 3-4-1 紅外線吸收光譜分析(FT-IR)..................47 3-4-2 核磁共振光譜分析(1H-NMR)...................47 3-4-3 紫外-可見光吸收光譜分析....................47 3-4-4 微差掃描熱分析(DSC)........................47 3-4-5 熱重分析(TGA)..............................48 3-4-6 熱機械分析(TMA)............................48 3-4-7 動態黏彈性機械分析(DMA)....................48 3-4-8 亞醯胺化程度(Degree of Imidization)........49 3-4-9 黏度測定(固有黏度,Inherent viscosity).....49 3-4-10 溶解度測試................................50 3-4-11 吸濕性測試................................50 3-4-12 介電性質量測..............................50 3-5 微影製程.....................................51 3-5-1 矽晶片表面處理.............................51 3-5-2 光阻劑的配製...............................51 3-5-2-1 MK-TBPS系統..............................51 3-5-2-2 MK-BP系統................................51 3-5-2-1 MK-TENA系統..............................52 3-5-3 旋轉塗佈...................................52 3-5-5 曝光.......................................53 3-5-6 顯影.......................................53 3-5-7 環化.......................................53 3-5-8 圖案的觀察.................................53 3-5-9 溶解速率的計算.............................54 3-5-10 特性曲線的製作............................54 第四章 結果與討論................................55 4-1 二酸酐純化前後之分析.........................55 4-1-1 紅外線吸收光譜分析.........................56 4-1-2 DSC分析....................................56 4-1-3 1H-NMR圖譜分析.............................56 4-2 聚醯胺酯之合成與鑑定.........................57 4-2-1 合成方法的決定.............................57 4-2-2 二胺單體加入次序的決定.....................59 4-2-3 聚醯胺酯的鑑定.............................59 4-3 熱性質的分析.................................61 4-3-1 微差掃描熱分析(DSC)........................61 4-3-2 熱重分析(TGA)..............................61 4-3-3 亞醯胺化(Imidization)分析..................62 4-3-4 熱機械分析(TMA)............................63 4-4 溶解度量測...................................64 4-5 吸濕性測試...................................65 4-6 感光性聚亞醯胺特性分析.......................65 4-6-1 UV-Visible穿透光譜分析.....................65 4-6-2 不同固含量之膜厚與轉速的關係...............66 4-6-3 預烤溫度與時間之選擇.......................66 4-6-4 顯影條件之選擇.............................67 4-6-5 感光系統之選擇.............................68 4-6-6 光阻配方添加劑之光化學反應機構.............69 4-6-7 交聯點上壓克力基團的交聯機構...............71 4-6-8 分子量對光敏感度與對比之影響...............72 4-6-9 顯影液濃度對光敏感度與對比之影響...........72 4-6-10 分子結構對光敏感度與對比之影響............73 4-6-11 OM之圖案觀察..............................73 4-6-12 SEM之圖案觀察.............................74 第五章 結論.....................................123 參考文獻........................................126 Scheme 目錄 Scheme 2-1 單批式合成法的化學反應式...............7 Scheme 2-2 兩段式合成法的化學反應式...............8 Scheme 2-3 化學環化法的化學反應式................12 Scheme 2-4 熱溶液環化法的化學反應式..............13 Scheme 2-5 感光性Polyamic Ester的化學反應式......15 Scheme 2-6 感光性Polyamic Acid的化學反應式.......16 Scheme 2-7 閉環的正型PSPI的化學反應式............19 Scheme 3-1 PMDA-BisAPAF-HEMA PAE的化學反應式.....42 Scheme 3-2 PMDA-BisAPAF-ODA-HEMA PAE的化學反應式.44 Scheme 3-3 PMDA-BisAPAF-HEMA PAE環化成PMDA-BisAPAF PI...............................................45 Scheme 3-4 PMDA-BisAPAF-ODA-HEMA PAE環化成PMDA-BisAPAF-ODA PI..............................46 Scheme 4-1 PMDA的水解反應........................55 Scheme 4-2 Chlorination合成方法..................58 Scheme 4-3 MK-BP系統之光化學反應機構.............70 Scheme 4-4 交聯點上壓克力基團的交聯機構..........71 Table 目錄 Table 1-1 聚亞醯胺與無機材料的特性比較............3 Table 2-1 美國無線電公司清潔法( RCA Cleaning )...21 Table 4-1 三種不同結構之聚亞醯胺的5%熱重損失溫度.75 Table 4-2 三種不同結構之聚亞醯胺的恆溫熱重損失...76 Table 4-3 三種不同結構之聚亞醯胺的CTE值與Tg點....77 Table 4-4 聚醯胺酯與聚亞醯胺的溶解度.............78 Table 4-5 三者前驅物之不同顯影液濃度的完全顯影時間.................................................79 Table 4-6 分子量對光敏感度及對比兩者間的關係.....80 Table 4-7 顯影液濃度與分子結構對光敏感度及對比兩者間的關係.........................................81 圖 目 錄 Fig 1-1 聚亞醯胺在相關的應用領域及產品............1 Fig 1-2 非感光性聚亞醯胺和感光性聚亞醯胺製程上之比較................................................4 Fig 2-1 積體電路的製造流程圖.....................20 Fig 2-2 旋轉塗佈示意圖...........................22 Fig 2-3 三種曝光方式的示意圖.....................24 Fig 2-4 正型光阻及負型光阻差異圖.................28 Fig 2-5 感光性高分子的特性曲線示意圖.............30 Fig 2-6 光阻的感度與對比.........................30 Fig 2-7 光阻膜中的光強度分布概念圖...............33 Fig 2-8 光阻劑特性曲線與解像性的關係.............33 Fig 3-1 反應系統裝置圖...........................41 Fig 3-2 特性曲線的製作...........................54 Fig 4-1 PMDA的紅外線光譜圖.......................82 Fig 4-2 PMDA的DSC曲線圖..........................83 Fig 4-3 PMDA純化前之1H-NMR圖譜...................84 Fig 4-4 PMDA純化後之1H-NMR圖譜...................85 Fig 4-5 聚醯胺酯之FT-IR光譜圖....................86 Fig 4-6 PMDA-BisAPAF-HEMA PAE之1H-NMR圖譜........87 Fig 4-7 PMDA-75%BisAPAF-25%ODA-HEMA PAE之1H-NMR圖譜 .................................................88 Fig 4-8 PMDA-50%BisAPAF-50%ODA-HEMA PAE之1H-NMR圖譜 .................................................89 Fig 4-9 PMDA-BisAPAF PI之熱安定性................90 Fig 4-10 PMDA-75%BisAPAF-25%ODA PI之熱安定性.....91 Fig 4-11 PMDA-50%BisAPAF-50%ODA PI之熱安定性.....92 Fig 4-12 三種不同結構之聚亞醯胺的恆溫耐熱性......93 Fig 4-13 聚亞醯胺之FT-IR光譜圖...................94 Fig 4-14 各個溫度亞醯胺化之TGA熱重損失...........95 Fig 4-15 各個溫度亞醯胺化程度曲線圖..............96 Fig 4-16 PMDA-BisAPAF PI之TMA曲線圖..............97 Fig 4-17 PMDA-75%BisAPAF-25%ODA PI之TMA曲線圖....98 Fig 4-18 PMDA-50%BisAPAF-50%ODA PI之TMA曲線圖....99 Fig 4-19 三種不同結構之聚亞醯胺的吸濕性.........100 Fig 4-20 三種不同結構之聚醯胺酯的UV-Visible穿透光譜 ................................................101 Fig 4-21 膜厚與轉速關係圖.......................102 Fig 4-22 PMDA-BisAPAF PAE光阻配方之預烤溫度與時間的選擇............................................103 Fig 4-23 PMDA-75%BisAPAF-25%ODA PAE光阻配方之預烤溫度與時間的選擇..................................104 Fig 4-24 PMDA-50%BisAPAF-50%ODA PAE光阻配方之預烤溫度與時間的選擇..................................105 Fig 4-25 三種不同結構之聚醯胺酯光阻配方在各預烤溫度完全趕走溶劑所需時間............................106 Fig 4-26 預烤溫度對曝光前後溶解速率的影響.......107 Fig 4-27 PMDA-BisAPAF-HEMA PAE光阻配方之不同顯影液濃度的顯影時間與殘留膜厚關係圖..................108 Fig 4-28 PMDA-75%BisAPAF-25%ODA-HEMA PAE光阻配方之不同顯影液濃度的顯影時間與殘留膜厚關係圖........109 Fig 4-29 PMDA-50%BisAPAF-50%ODA-HEMA PAE光阻配方之不同顯影液濃度的顯影時間與殘留膜厚關係圖........110 Fig 4-30 三種感光系統之曝光前後溶解速率差值.....111 Fig 4-31 三種感光系統之特性曲線.................112 Fig 4-32 分子量對特性曲線的影響.................113 Fig 4-33 PMDA-BisAPAF-HEMA PAE光阻配方以不同濃度顯影的特性曲線....................................114 Fig 4-34 PMDA-75%BisAPAF-25%ODA-HEMA PAE光阻配方以不同濃度顯影的特性曲線..........................115 Fig 4-35 PMDA-50%BisAPAF-50%ODA-HEMA PAE光阻配方以不同濃度顯影的特性曲線..........................116 Fig 4-36 PMDA-BisAPA-HEMA PAE的OM線路圖案.......117 Fig 4-37 PMDA-75%BisAPAF-25%ODA-HEMA PAE的OM線路圖案..............................................118 Fig 4-38 PMDA-50%BisAPAF-50%ODA-HEMA PAE的OM線路圖案..............................................119 Fig 4-39 PMDA-BisAPA PI的SEM線路圖案............120 Fig 4-40 PMDA-75%BisAPAF-25%ODA PI的SEM線路圖案.121 Fig 4-41 PMDA-50%BisAPAF-50%ODA PI的SEM線路圖案.122

    1.金進興, 工業材料, 第114期, p118(民85).
    2.M. T. Bogert and R. R. Renshaw, J. Am. Chem. Soc., 30(8), p1135 (1908).
    3.W. M. Edwards and I. M. Robinson, US Patent 2710853, (1955).
    4.許聯崇, 高分子會訊, 第三卷第四期, p4(民90).
    5.N. Yoda and H. Hiramoto, J. Macromol. Sci. Chem., 3, p1641(1984).
    6.H. F. Mark, N. M. Bikales, C. G. Overberder and G. Menges, Encyclopedia of Polymer science and engineering.New York, 1987, p364,
    7.馬振基, 塑膠資訊, 第12期, p14(民86).
    8.R. A. Meyers, J. Polym. Sci.:Part Al, 7(10), p2757(1969).
    9.N. Bilow, A. L. Landis and L. J. Miller, U.S. Patent 3,845,018,(1974).
    10.M. K. Ghosh and K. L. Mittal, Polyimides:Fundamentals and Applications, Marcel Dekker, New York, p7(1996).
    11.H. D. Stenzenberger, Brit. Polym. J., 15(1979).
    12.R. W. Lauver, J. Appl. Polym. Sci, 17(8), p2529(1979).
    13.J. V. Crivello, J. Polym. Sci, 11(6), p1185, (1973).
    14.N. Bilow, A. L. Landis and L. J. Miller, U.S. Patent 3,845,018,(1974).
    15.A. V. Rami. Reddy and P. Sreenivasulu Reddy, J. Appl. Polym. Sci., 58, p1935(1995).
    16.Alexander A Kuznetsov, High Perform. Polym., 12, p445(2000).
    17.K. Y. Choi and S. K. Choi, J. Polym. Sci.:Part A:20, p1107(1982).
    18.M. Bruma, B.Schulz,T. Kopnick and J. Robinson, High Perform. Polym., 12, p429(2000).
    19.C. Jung, T. Aoyama, T. Wada, H. Sasabe, M. Jikei and M. Kakimoto, High Perform. Polym., 12, p205(2000).
    20.M. Pasmanaban, M. Kakimoto and Y. Imai, J. Polym. Sci.:Part A.:28, p1569(1990).
    21.Y. Yamada, High Perform. Polym., 10, p92(1998).
    22.M. K. Ghosh and K. L. Mittal, Polyimides:Fundamentals and Applications, Marcel Dekker, New York, p15(1996).
    23.R. E. Kerwin and M. R. Goldrick, Polym. Engng. Sci., 2, p426(1971).
    24.R. Rubner, Siemens Forsch Entwickl Ber, 5, p92(1976).
    25.R. Rubner, B. Barter and G. Bald, Siemens Forsch Entwickl Ber, 5, p235(1976).
    26.H. J. Merrem, R. Klug and H. Hartner, Polyimide: Synthesis, Characteristic, Application, 2, p919(1984).
    27.J. S. Li, Z. B. Li and P. K. Zhu, J. Appli. Polym. Sci., 77, p943(2000).
    28.U. Mitsuru and N. Tomonari, Macromolecules, 29, p6427(1996).
    29.Y. Naoya and H. Hiramoto, J. Macrol. Scl-Chem., A21, p1641(1984).
    30.K. H. Kim, S. Jang and F. W. Harris, Macromolecules, 34, p8925(2001).
    31.H. A. Kang, I. S. Chung, M. Kakimoto and S. Y. Kim, Polym. Journal, 33, p284(2001).
    32.R. Runber, US patent 4040831, (1977).
    33.U. Geissler, US patent 5182187, (1993)
    34.H. George, US patent 5766808, (1998).
    35.L. Minnema, J. M. Zande, Polym. Engng. Sci. 28(12), p815(1988).
    36.R. Rubner, H. Ahne, E. Kuhn and G. Kolodziej, Photogr. Sci, Eng., 23(5), p303(1979).
    37.N. Yoda and H. Hiramoto, J. Macromol. Sci.(Chem.), A21(13&14), p1641(1984).
    38.A. A. Lin, V. R. Sastri, G. Tesoro and A. Reiser, Macromolecules, 21(4), p1165(1988).
    39.M. G. Moss, R. M. Cuzmer and T. Brewer, Proc. SPIE, 1086, p396, (1989).
    40.T. Omote, K. Koseki and T. Yamaoka, J. Appl. Polym. Sci., 38(3), p389(1989).
    41.蕭宏, ”半導體製程技術導論”, 歐亞書局有限公司(2001).
    42.龍文安, ”積體電路微影製程”, 高立出版社, (1998).
    43.莊達人, ”VLSI製造技術”, 高立出版社, (1996).
    44.施仁傑, ”壓克力系脂環族共聚物之合成及其在光酸增幅型光阻劑之應用”, 國立成功大學博士論文, (2001).
    45.黃炳照, 化工技術, 第7卷, 第9期, 光化學應用專輯, 光阻劑在半導體上之應用, 第140(1991.9).
    46.H. Ito and C. G. Wilson, ACS Symp. Ser., 11, p242(1983).
    47.劉瑞祥, ”感光性高分子”, 復文書局(1991).
    48.H. Hou, J. Junguang and M. Ding, Europ. Polym. Journal, 35, p1993(1998).
    49.M. Berrada, F. Carriere, B. Coutin, P. Monjol and H.Sekiguchi, Chem. Mater.,8,p1029(1996).
    50.C. J. Pouchert, The Aldrich Library Of NMR Spectra, Aldrich Chemical Company Inc(1984).
    51.E. Chin, F. M. Houlihan, R. A. Venditti, J. K. Gillham In Advances in Polyimide Science and Technology;C. Feger, M. M. Khojasteh, M. S. Htoo, Ed.,Technomic Publishing Co., Inc., p201(1993).
    52.R. H. Hayase, N. Kihara, N. Oyasato, S. Matake, Oba, M. SPIE, Advances in Resist Technology and Processing, 1466, 438, (1991).
    53.Dammel, R. Diazonaphthoquinone-Based Resists, SPIE turtorial text, SPIE Optical Engineering Press(1993).
    54.C. G. Wilson, In Introduction to microlithography;2Ed.;L. F. Thompson, C. G. Wilson, M. J. Bowden, Ed., ACS, Washington,D.C., (1994).
    55.E. Chin, F. M. Houlihan, R. A. Venditti, J. K. Gillham In Advances in Polyimide Science and Technology;C. Feger, M. M. Khojasteh, M. S. Htoo, Ed.,Technomic Publishing Co., Inc., p201(1993).
    56.K. Dietliker, Chemistry&Technology of UV & EB formulation for Coating, Inks &Paint, 3, 1991, p197.
    57.H. George, US Patent 5766808,(1998).

    下載圖示 校內:2004-07-22公開
    校外:2004-07-22公開
    QR CODE