| 研究生: |
范銘欣 Fan, Ming-Hsin |
|---|---|
| 論文名稱: |
負型鹼性水溶液顯影感光性聚亞醯胺材料之研究 Negative-working Aqueous Base Developable Photosensitive Polyimide |
| 指導教授: |
許聯崇
Hsu, Lien-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 感光性 、聚亞醯胺 |
| 外文關鍵詞: | photosensitive, polyimide |
| 相關次數: | 點閱:50 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用Pyromellitic dianhydride (PMDA)二酸酐單體和2,2-Bis-(3-amino-4-hydroxyphenyl) hexafluoropropane (BisAPAF)二胺單體或4,4-Diaminodiphenyl ether (4,4-ODA)二胺單體以及2-hydroxyethyl methacrylate (HEMA)等反應物,三種不同結構的聚醯胺酯(polyamic ester;PAE)成功地被合成。由於這些樹脂在懸掛(pendant)位置上含有壓克力系感光基團,因此可當作負型感光性聚亞醯胺(photosensitive polyimide;PSPI)之前驅物(precursor)的交聯點(linkage),而phenolic hydroxyl groups則可使未曝光的前驅物溶於鹼性水溶液顯影液。如此即可製作成負型鹼性水溶液顯影感光性聚亞醯胺。這些樹脂是以phenyl phosphonic dichloride為活化劑,採用direct polymerization的合成方法,得到固有黏度(inherent viscosity)為0.15~0.38(dL/g)的聚醯胺酯,其結構可由FTIR及1H-NMR圖譜得到鑑定。
亞醯胺化後之三種不同結構的聚亞醯胺可藉由ODA二胺單體比例的增加來提高其熱安定性與恆溫耐熱性,而且三者亦表現出絕佳的耐化學藥品性。
為了提高負型感光性聚亞醯胺的光阻特性,一些感光添加劑如:增感劑(sensitizer)、光起始劑(photoinitiator)及交聯劑(cross-linker)等被加入光阻配方中,其中以MK-TBPS感光系統最能表現出負型感光性聚亞醯胺的光阻特性。將完全顯影時間控制在20~90秒,可以有效成功地將圖案完全轉移,而且線路的解析度也呈現最佳狀態。經由適當控制微影成像(microlithography)參數,三種不同結構的聚醯胺酯光阻配方,其解析度皆可達到10μm左右。此外,感光添加劑、分子量、顯影液濃度以及分子結構等對光敏感度(sensitivity)與對比(contrast)之微影成像特性的影響也一併探討。
Through molecular design, three polyamic esters have been synthesized from Pyromellitic dianhydride (PMDA), 2,2-Bis-(3-amino- 4-hydroxyphenyl) hexafluoropropane (BisAPAF), 4,4-Diaminodiphenyl ether (4,4’-ODA) and 2-hydroxyethyl methacrylate (HEMA).
Due to the introduction of photosensitive acrylate groups and aqueous base soluble phenolic hydroxyl groups in the backbone, these polyamic esters can be used as the precursors of negative-working aqueous base developable photosensitive polyimides (PSPI).
These polyamic esters were prepared by direct polymerization by using phenyl phosphonic dichloride (PPD) as an activator. The inherent viscosities of these polymers ranged from 0.15 to 0.38 (dL/g). Their structures were characterized by Fourier transform infrared spectroscopy (FTIR) and 1H-NMR.
In order to improve the photolithographic performance of these PSPIs, different photosensitizers, photoinitiators and crosslinkers have been added in the PSPI formulation. Among them, Michler’s ketone (MK) / tribromomethyl phenyl sulfone (TBPS) system gave the best results. Using aqueous TMAH solution as the developer, patterns with a resolution of 10μm were obtained from these PSPI formulations.
Additionally, the effects of the amount of photosensitizer added, the molecular weight and molecular structure of the precursors, and the concentration of developer on the photosensitivity and contrast of the PSPI formulations were also discussed.
1.金進興, 工業材料, 第114期, p118(民85).
2.M. T. Bogert and R. R. Renshaw, J. Am. Chem. Soc., 30(8), p1135 (1908).
3.W. M. Edwards and I. M. Robinson, US Patent 2710853, (1955).
4.許聯崇, 高分子會訊, 第三卷第四期, p4(民90).
5.N. Yoda and H. Hiramoto, J. Macromol. Sci. Chem., 3, p1641(1984).
6.H. F. Mark, N. M. Bikales, C. G. Overberder and G. Menges, Encyclopedia of Polymer science and engineering.New York, 1987, p364,
7.馬振基, 塑膠資訊, 第12期, p14(民86).
8.R. A. Meyers, J. Polym. Sci.:Part Al, 7(10), p2757(1969).
9.N. Bilow, A. L. Landis and L. J. Miller, U.S. Patent 3,845,018,(1974).
10.M. K. Ghosh and K. L. Mittal, Polyimides:Fundamentals and Applications, Marcel Dekker, New York, p7(1996).
11.H. D. Stenzenberger, Brit. Polym. J., 15(1979).
12.R. W. Lauver, J. Appl. Polym. Sci, 17(8), p2529(1979).
13.J. V. Crivello, J. Polym. Sci, 11(6), p1185, (1973).
14.N. Bilow, A. L. Landis and L. J. Miller, U.S. Patent 3,845,018,(1974).
15.A. V. Rami. Reddy and P. Sreenivasulu Reddy, J. Appl. Polym. Sci., 58, p1935(1995).
16.Alexander A Kuznetsov, High Perform. Polym., 12, p445(2000).
17.K. Y. Choi and S. K. Choi, J. Polym. Sci.:Part A:20, p1107(1982).
18.M. Bruma, B.Schulz,T. Kopnick and J. Robinson, High Perform. Polym., 12, p429(2000).
19.C. Jung, T. Aoyama, T. Wada, H. Sasabe, M. Jikei and M. Kakimoto, High Perform. Polym., 12, p205(2000).
20.M. Pasmanaban, M. Kakimoto and Y. Imai, J. Polym. Sci.:Part A.:28, p1569(1990).
21.Y. Yamada, High Perform. Polym., 10, p92(1998).
22.M. K. Ghosh and K. L. Mittal, Polyimides:Fundamentals and Applications, Marcel Dekker, New York, p15(1996).
23.R. E. Kerwin and M. R. Goldrick, Polym. Engng. Sci., 2, p426(1971).
24.R. Rubner, Siemens Forsch Entwickl Ber, 5, p92(1976).
25.R. Rubner, B. Barter and G. Bald, Siemens Forsch Entwickl Ber, 5, p235(1976).
26.H. J. Merrem, R. Klug and H. Hartner, Polyimide: Synthesis, Characteristic, Application, 2, p919(1984).
27.J. S. Li, Z. B. Li and P. K. Zhu, J. Appli. Polym. Sci., 77, p943(2000).
28.U. Mitsuru and N. Tomonari, Macromolecules, 29, p6427(1996).
29.Y. Naoya and H. Hiramoto, J. Macrol. Scl-Chem., A21, p1641(1984).
30.K. H. Kim, S. Jang and F. W. Harris, Macromolecules, 34, p8925(2001).
31.H. A. Kang, I. S. Chung, M. Kakimoto and S. Y. Kim, Polym. Journal, 33, p284(2001).
32.R. Runber, US patent 4040831, (1977).
33.U. Geissler, US patent 5182187, (1993)
34.H. George, US patent 5766808, (1998).
35.L. Minnema, J. M. Zande, Polym. Engng. Sci. 28(12), p815(1988).
36.R. Rubner, H. Ahne, E. Kuhn and G. Kolodziej, Photogr. Sci, Eng., 23(5), p303(1979).
37.N. Yoda and H. Hiramoto, J. Macromol. Sci.(Chem.), A21(13&14), p1641(1984).
38.A. A. Lin, V. R. Sastri, G. Tesoro and A. Reiser, Macromolecules, 21(4), p1165(1988).
39.M. G. Moss, R. M. Cuzmer and T. Brewer, Proc. SPIE, 1086, p396, (1989).
40.T. Omote, K. Koseki and T. Yamaoka, J. Appl. Polym. Sci., 38(3), p389(1989).
41.蕭宏, ”半導體製程技術導論”, 歐亞書局有限公司(2001).
42.龍文安, ”積體電路微影製程”, 高立出版社, (1998).
43.莊達人, ”VLSI製造技術”, 高立出版社, (1996).
44.施仁傑, ”壓克力系脂環族共聚物之合成及其在光酸增幅型光阻劑之應用”, 國立成功大學博士論文, (2001).
45.黃炳照, 化工技術, 第7卷, 第9期, 光化學應用專輯, 光阻劑在半導體上之應用, 第140(1991.9).
46.H. Ito and C. G. Wilson, ACS Symp. Ser., 11, p242(1983).
47.劉瑞祥, ”感光性高分子”, 復文書局(1991).
48.H. Hou, J. Junguang and M. Ding, Europ. Polym. Journal, 35, p1993(1998).
49.M. Berrada, F. Carriere, B. Coutin, P. Monjol and H.Sekiguchi, Chem. Mater.,8,p1029(1996).
50.C. J. Pouchert, The Aldrich Library Of NMR Spectra, Aldrich Chemical Company Inc(1984).
51.E. Chin, F. M. Houlihan, R. A. Venditti, J. K. Gillham In Advances in Polyimide Science and Technology;C. Feger, M. M. Khojasteh, M. S. Htoo, Ed.,Technomic Publishing Co., Inc., p201(1993).
52.R. H. Hayase, N. Kihara, N. Oyasato, S. Matake, Oba, M. SPIE, Advances in Resist Technology and Processing, 1466, 438, (1991).
53.Dammel, R. Diazonaphthoquinone-Based Resists, SPIE turtorial text, SPIE Optical Engineering Press(1993).
54.C. G. Wilson, In Introduction to microlithography;2Ed.;L. F. Thompson, C. G. Wilson, M. J. Bowden, Ed., ACS, Washington,D.C., (1994).
55.E. Chin, F. M. Houlihan, R. A. Venditti, J. K. Gillham In Advances in Polyimide Science and Technology;C. Feger, M. M. Khojasteh, M. S. Htoo, Ed.,Technomic Publishing Co., Inc., p201(1993).
56.K. Dietliker, Chemistry&Technology of UV & EB formulation for Coating, Inks &Paint, 3, 1991, p197.
57.H. George, US Patent 5766808,(1998).