簡易檢索 / 詳目顯示

研究生: 陳竑鈞
Chen, Hung-Chun
論文名稱: 摻雜三氧化鉬至五苯環通道層提升 有機薄膜電晶體特性
Field-effect mobility enhancement of organic thin-film transistors using MoO3 doped pentacene as active layer
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 五苯環薄膜電晶體三氧化鉬
外文關鍵詞: pentacene, Field Effect Mobility, TFT
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為改善有機半導體場效載子移動率(Field Effect Mobility, 以µeff表示)偏低之缺點,本研究先探討pentacene通道層之基板在不同蒸鍍溫度(deposit temperature)對元件特性之影響,並找出最佳基板蒸鍍溫度;接著在基板於最佳蒸鍍溫度下,探討pentacene通道層摻雜不同量MoO3時對元件特性之影響,包括:輸出電流(output current, IDS)、µeff、臨界電壓(Threshold Voltage, 以VT表示)及電流開關比(on/off ratio, 以ION/IOFF表示)等;此外,以紫外光光電子能譜(Ultraviolet Photoemission Spectroscopy, 簡稱UPS)量測pentacene通道層摻雜不同量MoO3時其Fermi level與HOMO差距之變化,並驗證MoO3之添加是否有助於pentacene通道層電洞濃度(Hole Concentration)增加。研究結果顯示:
    Pentacene通道層基板在蒸鍍溫度60℃、通道層與電極間加一層1 nm氟化鋰奈米結構時元件有最佳特性表現,其飽和電流(Saturation Current)為-11.6 µA、µeff為0.71 cm2/Vs、VT約為-21.2 V、ION/IOFF為1.6×106。基板在蒸鍍溫度60℃下、pentacene通道層添加MoO3時有助於元件飽和電流及µeff提升;當MoO3摻雜比在6.7%時元件有最大飽和電流(-38 µA)及µeff(1.6 cm2/Vs),其值分別約為未添加MoO3時之3.3及2.3倍,然MoO3摻雜比過多時元件之µeff有降低之現象但仍較未添加MoO3時大;其VT會隨MoO3摻雜比提升而減小,當MoO3摻雜比在18.6%時其VT(-7.8 V)僅為未添加MoO3時之1/3、元件能量之消耗最少。當pentacene通道層開始摻雜MoO3時元件之ION/IOFF開始下降;當MoO3摻雜至9.1 %時,其ION/IOFF值(1.9×105)與未摻雜MoO3時相較約僅減少一個數量級;而MoO3摻雜比提升至18.6 %時,其ION/IOFF值(3.4×102)與未摻雜MoO3時相較則明顯降低(約減少四個數量級),故控制適當MoO3摻雜比是必要的。UPS量測結果發現:隨MoO3摻雜比增加,pentacene通道層之Fermi level和HOMO越接近,此證實pentacene摻雜MoO3有助於通道層p-type特性提升及電洞濃度增加。本研究結果顯示:有機薄膜電晶體之pentacene通道層中摻雜適量MoO3時可明顯地提升元件特性。

    The purpose of this research is to improve the field effect carrier mobility (µeff) of organic semiconductors. At the optimal substrate deposit temperature, the influence of dope concentration of molybdnum trioxide (MoO3) on the device properties, when the device was nano-structured with 1 nm lithium fluoride between the active layer and electrode to improve the efficiency of the carrier injection.
    The results showed that the device at 60°C deposition temperature had the best performance. Compared with the conventional OTFTs, the saturation current was increased from -9.2µA to -11.6 µA, the field-effect mobility was improved from 0.53 cm2/Vs to 0.71 cm2/Vs.
    When 6.7% molybdenum trioxide (MoO3) was doped in the pentacene as the active layer, the saturation current was increased from -11.6 µA to = -37.9 µA, the field-effect mobility was improved from 0.71 cm2/Vs to 1.6 cm2/Vs.
    According to UPS measurements, the increase in conductivity is due to electron transfer from the highest occupied molecular orbital of the host molecules to very low lying unfilled states of embedded MoO3. The energy levels of these molecular are estimated by the energy levels of a neat MoO3 thin film with an electron affinity of 6.3 eV and an ionization energy of 9.3 eV. The Fermi level of MoO3-doped pentacene thin films rapidly shifts with increasing doping concentration towards the occupied states. Pinning of the Fermi level several 300 meV above the HOMO edge is observed for doping concentrations higher than 6.7 mol%. This finding verifies that MoO3 doping to pentacene channel improved the p-type property and hole concentration of the channel. This study demonstrates that MoO3 doping to the pentacene channel of organic thin film transistor is crucial to improve the performance of device.

    摘要 I Abstract III 致謝 V 總目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1有機半導體簡介 1 1-2研究動機 2 參考文獻 4 第二章 背景理論 5 2-1有機薄膜電晶體 5 2-1-1有機薄膜電晶體基本工作原理 7 2-1-2有機薄膜電晶體重要參數 13 2-2載子傳輸機制 16 2-2-1 Multiple Trapping and Release (MTR) 16 2-2-2 Hopping 16 2-3金屬-緩衝層-有機接面之概論 17 2-4接觸電阻[17] 19 2-5光電子能譜(PES) 22 2-5-1簡介 22 2-5-2光電子能譜(PES)種類與應用 23 2-5-3紫外光光電子能譜技術 23 2-5-4 X-ray光電子能譜技術 23 2-6 Fermi Level Pinning 25 參考文獻 26 第三章 實驗流程 29 3-1實驗架構 29 3-2實驗材料 30 3-2-1 Pentacene 30 3-2-2 Pentacene分子軌域與鍵結 33 3-2-3 聚甲基丙烯酸甲酯(PMMA) 34 3-2-4氟化鋰(LiF) 35 3-2-5金屬電極材料 36 3-3實驗步驟 36 參考文獻 41 第四章 結果與討論 42 4-1基板升溫 42 4-2共蒸鍍製作通道層 52 4-3薄膜光電子能譜分析 61 4-4通道層與電極接觸特性分析 65 參考文獻 75 第五章 結論與建議 76 5-1結論 76 5-2建議 77 表4-1 Pentacene在不同MoO3摻雜比時元件之特性 55 圖2-1 Ebisawa等人發表之有機電晶體[1] 5 圖2-2 Tsumura等人發表之有機電晶體[2] 6 圖2-3 有機薄膜電晶體元件結構(a) top contact、(b) bottom contact 8 圖2-4 VGS > 0時,有機半導體與絕緣層介面產生 空乏區,有機薄膜電晶體工作於空乏區示意圖 9 圖2-5 VGS < 0且VD=VS=0時,有機薄膜電晶體之通道層與絕緣層界面累積電洞形成通道示意圖 9 圖2-6 當VGS <VDS< 0時有機薄膜電晶體源極與汲極間產生電流示意圖 10 圖2-7 VDS < VGS < 0時有機薄膜電晶體當有機半導體近汲極區產生空乏區 11 圖2-8 有機薄膜電晶體電壓-電流曲線圖(a)輸出特性區線、(b)轉換特性區線 12 圖2-9 有機半導體載子傳輸時局部狀態間之跳躍通過相鄰分子間之共軛系統 17 圖2-10 薄膜電晶體之通道電阻與接觸電阻示意圖 21 圖2-11 不同通道長度下之VGT電壓對應開路電阻之關係圖 21 圖2-12 不同VGT下之通道長度對應寬度規一化開路電阻關係圖 22 圖2-13 電子吸收光子能量克服束縛能並脫離材料表面形成自由電子 24 圖2-14 ESCA量測示意圖 24 圖2-15 界面位能障之影響 25 圖3-1 有LiF緩衝層之有機薄膜電晶體元件實驗結構 29 圖3-2 Pentacene分子結構 30 圖3-3 薄膜相與塊體相之排列結構[2] 32 圖3-4 Pentacene分子排列之階層結構[3] 33 圖3-5 一苯環之非局部狀態 π 鍵 34 圖3-6 Pentacene內苯環局部狀態 π 鍵電子之分佈 34 圖3-7 PMMA分子結構 35 圖3-8 本研究設計之閘極電極圖形之金屬遮罩 39 圖3-9 本研究設計之通道層圖形之金屬遮罩 39 圖3-10 本研究設計之源極與汲極電極圖形之金屬遮罩 40 圖4-1 基板升溫溫度25 ℃時元件之輸出特性曲線 42 圖4-2 基板升溫溫度60 ℃時元件之輸出特性曲線 43 圖4-3 基板升溫溫度70 ℃時元件之輸出特性曲線 43 圖4-4 基板升溫溫度80 ℃時元件之輸出特性曲線 44 圖4-5 基板升溫溫度90 ℃時元件之輸出特性曲線 44 圖4-6 基板升溫溫度25 ℃時元件之轉換特性曲線 45 圖4-7 基板升溫溫度60 ℃時元件之轉換特性曲線 46 圖4-8 基板升溫溫度70 ℃時元件之轉換特性曲線 46 圖4-9 基板升溫溫度80 ℃時元件之轉換特性曲線 47 圖4-10 基板升溫溫度90 ℃時元件之轉換特性曲線 47 圖4-11 基板升溫溫度分別為25、60、70、80及90 ℃時之μeff 48 圖4-12 SPM量測基板25 ℃(RT)時PMMA表面形貌 50 圖4-13 SPM量測基板60 ℃時PMMA表面形貌 50 圖4-14 SPM量測基板90 ℃時PMMA表面形貌 51 圖4-15 基板升溫溫度分別為25(RT)、60及90℃時 pentacene之XRD圖 51 圖4-16 Pentacene未摻雜MoO3時元件之輸出特性曲線 52 圖4-17 Pentacene摻雜2.8 ﹪MoO3時之元件輸出特性曲線 53 圖4-18 Pentacene摻雜6.7 ﹪MoO3時之元件輸出特性曲線 53 圖4-19 Pentacene摻雜9.1 ﹪MoO3時之元件輸出特性曲線 54 圖4-20 Pentacene摻雜18.6 ﹪MoO3時之元件輸出特性曲線 54 圖4-21 Pentacene未摻雜MoO3時元件之轉換特性曲線 57 圖4-22 Pentacene摻雜2.8 ﹪MoO3時元件之轉換特性曲線 57 圖4-23 Pentacene摻雜6.7 ﹪MoO3時元件之轉換特性曲線 58 圖4-24 Pentacene摻雜9.1 ﹪MoO3時元件之轉換特性曲線 58 圖4-25 Pentacene摻雜18.6 ﹪MoO3時元件之轉換特性曲線 59 圖4-26 Pentacene在不同MoO3摻雜比時之XRD圖 59 圖4-27 Pentacene在不同MoO3摻雜比時HOMO相對 於Au work function之位移 62 圖4-28 Pentacene在不同MoO3摻雜比時相對於Au之vacuum level 62 圖4-29 UV-Vis量測Pentacene在不同MoO3摻雜比時 薄膜之穿透率 63 圖4-30 pentacene與MoO3載子轉移示意圖 64 圖4-31 Pentacene在不同MoO3摻雜比時之能帶變化 64 圖4-32 Au於Pentacene未摻雜MoO3表面之功函數 66 圖4-33 Au於Pentacene摻雜6.7 ﹪MoO3表面之功函數 66 圖4-34 Au於Pentacene摻雜18.6 ﹪MoO3表面之功函數 67 圖4-35 Au與MoO3載子轉移示意圖 67 圖4-36 Au於pentacene未摻雜MoO3表面之光電子 能譜onset位置 68 圖4-37 Au於Pentacene摻雜6.7% MoO3表面之光電子 能譜onset位置 69 圖4-38 Au於Pentacene摻雜18.6% MoO3表面之光電子 能譜onset位置 69 圖4-39 Au於pentacene未摻雜MoO3表面之能帶 70 圖4-40 Au於Pentacene摻雜6.7% MoO3表面之能帶 71 圖4-41 Au於Pentacene摻雜18.6% MoO3表面之能帶 72 圖4-42 Pentacene未摻雜MoO3時元件之電阻 73 圖4-43 Pentacene摻雜6.7% MoO3時元件之電阻 74 圖4-44 Pentacene在MoO3摻雜比0及6.7%時之接觸電阻 74

    [1] C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacdDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., 39, 1098 (1977).
    [2] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, “All-polymer field-effect transistor realized by printing techniques”, Science, 265, 1684 (1994).
    [3] M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn “Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films”, Appl. Phys. Lett., 95, 123301 (2009).
    [4] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode”, Appl. Phys. Lett., 87, 193508 (2005).
    [1] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface”, J. Appl. Phys., 54, 3255 (1983).
    [2] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film”, Appl. Phys. Lett., 49, 1210 (1986).
    [3] V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, “Elastomeric transistor stamps: reversible probing of charge transport in organic crystals”, Science, 303, 1644 (2004).
    [4] S. M. Sze, “Physics of semiconductor device”, Wiley (1981).
    [5] P. W. Anderson, “Absence of diffusion in certain random lattices” Phys. Rev., 109, 1492 (1958).
    [6] G. Horowitz, “Organic field-effect transistors” Adv. Mater., 5, 10 (1998).
    [7] M. C. J. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors” Philips Research Laboratories, 5656 AA Eindhoven, The Netherlands Instituut-Lorentz, University of Leiden, 2300 RA Leiden, The Netherlands, (2006).
    [8] J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, “Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of 2D electron systems in organic crystals” Laboratory for Solid State Physics ETH, CH-8093 Z¨urich, Switzerland, (2006).
    [9] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., 80, 4384 (2002).
    [10] F. Amy, C. Chan, and A. Kahn, “Polarization at the gold/pentacene interface”, Org. Chem., 6, 85 (2005).
    [11] K. Ihm, H. E. Heo, S. Chung, J. R. Ahn, J. H. Kim, and T. H. Kang, “Odd characteristics of Au film on pentacene”, Appl. Phys. Lett., 90, 242111 (2007).
    [12] Y. E. Kim, H. Park, and J. J. Kim, “Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films”, Appl. Phys. Lett., 69, 599 (1996).
    [13] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., 70, 152 (1997).
    [14] F. Li, H. Tang, J. Anderegg, and J. Shinar, “Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3 /Al cathode”, Appl. Phys. Lett., 70, 1233 (1997).
    [15] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, “Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers”, Appl. Phys. Lett., 74, 1227 (1999).
    [16] S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, and N. R. Armstrong, “Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode”, J. Appl. Phys., 84, 2324 (1998).
    [17] G. Daniel, B. Paul, K. Krishna, and Z. Jie, “Printed organic and molecular electronics”, Kluwer Academic Pub (2004).
    [18] S. M. Sze, Physics of semiconductor device, physics and technology, Wiley, 1985
    [1] Frank-J. Meyer zu Heringdorf, M. C. Reuter & R. M. Tromp, “Growth dynamics of pentacene thin films” IBM T.J. Watson Research Center, Yorktown Heights, PO Box 218, New York 10598, USA.
    [2] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, “Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction”, J. Am. Chem. Soc. 9 Vol. 126, No. 13 (2004).
    [3] Iwao Yagi, Kazuhito Tsukagoshia, Yoshinobu Aoyagi, “Growth control of pentacene films on SiO2/Si substrates towards formation of flat conduction layers” Thin Solid Films, 467, pp.168-171 (2004).
    [4] J. L. Bredaset al. “Electronic structure of π-conjugated oligomerand polymers : a quantum-chemical approach to transport properties.” Syn. Mat., 125, pp.107-116 (2002).
    [5] T. S. Huang, Y. K. Su and P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer”, Appl. Phys. Lett., 91, 092116 (2007).
    [6] W. Wang, J. Shi, W. Jiang, S. Guo, H. Zhang, B. Quan and D. Ma, “High-mobility pentacene thin-film transistors with copolymer-gate dielectric”, Microelectron. J., 38, 27 (2007).
    [1] J. Lee, J. H. Kim, and S. Im, “Effects of substrate temperature on the device properties of pentacene-based thin film transistors using Al2O3+x gate dielectric”, J. Appl. Phys., 95, 3733 (2004).
    [2] A. D. Carloa, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors”, Appl. Phys. Lett., 86, 263501 (2005).
    [3] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Influence of grain sizes on the mobility of organic thin-film transistors”, IEEE Electron Device Lett., 18, 87 (1997).
    [4] C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance”, Science 318, 76 (2007).

    下載圖示 校內:2015-05-28公開
    校外:2015-05-28公開
    QR CODE