簡易檢索 / 詳目顯示

研究生: 陳信宏
Chen, Shinn-Horng
論文名稱: 主鏈含電子及電洞傳遞基團發光高分子的合成與光電性質
The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Electron- and Hole-Transporting Segments
指導教授: 陳雲
Chen, Yun
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 192
中文關鍵詞: 電子及電洞傳遞基團電激發光高分子
外文關鍵詞: poly(p-phenylenevinylene), electroluminescence
相關次數: 點閱:57下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自Burroughes 等人以poly(p-phenylenevinylene) (PPV)為材料製作高分子發光二極體以來,以全共軛發光高分子、主鏈含孤立發光基團高分子、側鏈含孤立發光基團高分子或摻混不同的發光高分子常被應用於電激發光(electroluminescence)上並被廣泛研究。
    在本篇論文中首先合成了具有電子傳遞基團bis(3-(trifluoromethyl)phenyl)- 1,3,4-oxadiazole (OXD-F), bis(3-(trifluoromethyl)phenyl)-4-(4-hexyloxyphenyl)- 4H-1,2,4-triazole (TAZ-F), 2-(3-(trifluoromethyl)phenyl)-5-(4-(5-(3-(trifluoromethyl) phenyl)-1,3,4-oxadiazol-2-yl)-2,5-bis(hexyloxy)phenyl)-1,3,4-oxadiazole (DIOXD), 2,7-bis(3-(trifluoromethyl)phenyl)-9,9-dihexylfluorene, 4-(4-(hexyloxy)phenyl)-3,5- diphenyl-4H-1,2,4-triazole (TAZ) or 2,5-diphenyl-1,3,4-oxadiazole (OXD)及電洞傳遞基團1,4-bis(hexyloxy)-2,5-distyrylbenzene (DSB), bis(styryl)fluorine (DSF) 3,6-distyryl-N-2-ethylhexylcarbazole, or 2,7-distyryl-9,9-dihexylfluorene的芳香醚電激發光高分子P1~P8。高分子P1~P8的發光中皆有能量轉移的現象。此外高分子P1~P8因有導入電子傳遞基團及電洞傳遞基團,所以對電子與電洞自電極注入的能障能同時降低。
    此外本研究合成了PPV的衍生物高分子P9~P18,其中高分子P12和P13 其結構上僅具有電洞傳遞基團的發光高分子,而高分子P10~P11和P13~P18 除具有電洞傳遞基團外,還具有電子傳遞基團OXD、TAZ、DIOXD等。這些不同的電子傳遞基團藉由不同的連接基團與電洞傳遞基團相連接成高分子。這些連接的基團可分為以下四種 (1) 1,4-phenylene(P14和P16)(2) 1,4-divinylbenzene (P15 和P17)(3) 4,4’-biphenylene (P18) (4) ether spacers (P9) (5) single bonds (P10和P11)。 本研究針對這些連接的基團對高分子性質的影響做了光學、電化學及元件上的比較。我們經由 semi-empirical MNDO的方式,將這些高分子的重複單位作分子最穩定的結構模擬與計算,發現在高分子P14、P16、P18中有81~89度畚環間扭角的形成。經由實驗結果發現這些在高分子內介於電子、電洞傳遞基團間的扭角對高分子的光學、電化學、電激發光性質有很大的影響。在光學方面的應用可以透過不同的連接基團的設計來改變高分子發光的顏色,本研究所使用的高分子發光可從藍色、綠色調整到黃色。
    本研究所合成的高分子在熱性質、光學性質、電化學性質、元件性質都有做討論與相互的比較,同時利用了模式化合物M1~M5與M1~M4和模式高分子P1~P4和本研究所合成的高分子做性質的比較。此外,對於高分子末端基對性質的影響則另行合成了P12-M~P14-M做討論。

    Since polymeric light-emitting diodes based on poly(p-phenylenevinylene) (PPV) were reported by Burroughes et al., electroluminescence (EL) from fully-conjugated polymers, main chain polymers with isolated chromophores, side chain polymers with linked chromophores, and polymeric blends also have been extensively investigated.
    In this dissertation, we synthesized a series of copoly(aryl ether)s (P1~P8) consisting of electron-transporting segments [bis(3-(trifluoromethyl)phenyl)-1,3,4-oxadiazole (OXD-F), bis(3-(trifluoromethyl)phenyl)-4-(4-hexyloxyphenyl)-4H-1,2,4-triazole (TAZ-F), 2-(3-(trifluoromethyl)phenyl)-5-(4-(5-(3-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)- 2,5-bis(hexyloxy)phenyl)-1,3,4-oxadiazole (DIOXD), 2,7-bis(3-(trifluoromethyl)phenyl)- 9,9-dihexylfluorene, 4-(4-(hexyloxy)phenyl)-3,5-diphenyl-4H-1,2,4-triazole (TAZ) or 2,5-diphenyl-1,3,4-oxadiazole (OXD)] and hole-transporting segments [1,4-bis(hexyloxy)- 2,5-distyrylbenzene (DSB), bis(styryl)fluorine (DSF) 3,6-distyryl-N-2-ethylhexylcarbazole, or 2,7-distyryl-9,9-dihexylfluorene]. The emissions of P1~P8 are dominated by the hole-transporting fluorophores with longer emissive wavelength via efficient excitation energy transfer. From electrochemical date, electron and hole affinity of P1~P8 can be enhanced simultaneously.
    Furthermore, a series of PPV derivatives polymer P9~P18 have also synthesized. Polymers P12 and P13 only possess hole-transporting DSB segments are treated as model polymers. Polymer P10~P11 and P13~P18 consisting of electron- transporting OXD, TAZ, DIOXD segments and hole-transporting DSB segments via different connectors. The connectors between hole- and electron-transporting segments in P9~P10 and P14~P18 can be divided into five categories: (1) 1,4-phenylene for P14, and P16; (2) 1,4-divinylbenzene for P15 and P17; (3) 4,4’-biphenylene for P18; (4) ether spacers for P9; (5) single bonds for P10 and P11. The effects of connector structures between hole- and electron-transporting segments on polymeric properties were observed and discussed. From optimized semi-empirical MNDO calculations, the adjacent benzene rings between DSB and OXD, TAZ or DIOXD chromophores in P10, P11, P14, P16, and P18 twist about 81o~89o. The large torsion in P10, P11, P14, P16, and P18 significantly limits delocalization of charges between hole- and electron-transporting segments. Accordingly, in P10, P11, P14, P16, and P18, the oxidation and reduction starts at the hole- and the electron-transporting, respectively, like those in P1~P9. The electroluminescences of P9~P18 and corresponding C.I.E. coordinate are also depicted to indicate that incorporating different connectors to these polymers changed their color from blue, green to yellow region.
    The thermal, optical, electrochemical, and electroluminescent properties of these polymers were investigated. Optical properties of P1~P18 were investigated by comparing their absorption and photoluminescence spectra with those of compositional model compounds M1~M5, M1~M4 and model polymers P1~P4. Three corresponding end-capped model polymers P12-M~P14-M were also synthesized to evaluate the effect of end groups.

    Table of Contents Abstract ... I Acknowledgements ... III List of Schemes ... IX List of Tables ... X List of Figures ... XI Chapter 1 General Introduction 1 1-1 Development Background of Electroluminescence 1 1.2 Types of Electroluminescence 4 1.3 Common Polymerization for Electroluminescent Polymers 8 1-3-1 Friedel-Craft Polymerization 8 1-3-2 Metal-Mediated Polycondensation Reaction 8 1-3-3 Metathesis Polymerization 12 1-3-4 Wittig and Wittig-Horner Reaction 12 1-3-5 The Knoevenagel Reaction 12 1-3-6 The Wessling Method 13 1-3-7 The Dehydrohalogenation Condensation Polymerization 13 1-3-8 Reductive Polymerization 14 1-4 Some Common Electroluminescent Fluorophore Derivatives 16 1-4-1 Electroluminescent PPV derivatives 16 1-4-2 Electroluminescent Triazole derivatives 18 1-4-3 Electroluminescent oxadiazole derivatives 18 1-4-4 Electroluminescent Fluorene derivatives 19 1-4-5 Electroluminescent Carbazole derivatives 21 1-5 Non-Conjugated Electroluminescent Polymers 22 1-6 Twisted Structures of Molecules and Polymers 26 1-7 Research Motivation 28 Chapter 2 Review and Theoretical Background 30 2.1 Principle of Photoluminescence 30 2.2 The Quantum Yield and Photoluminescent Variables 32 2-3 The Native of Emissive States 36 2-4 The Emission of Intermolecular Interaction 40 2-5 Energy Transfer 44 2-6 Computational Chemistry 49 Chapter 3 Experimental Section 53 3-1 Instruments 53 3-2 Measurements 53 3-3 Color Matching Functions and Chromaticity Diagram 57 3-4 Materials 59 3-5 Synthesis Procedures 61 3-5-1 Synthesis of Monomers 61 3-5-2 Synthesis of Model Compounds 65 3-5-3 Synthesis of Polymers 67 3-5-4 Synthesis of Model Polymers 70 Chapter 4 Luminescent Copoly(aryl ether)s with New Electron-transporting Bis(3-(trifluoromethyl)phenyl)-1,3,4-oxadiazole or Bis(3-(trifluoromethyl)phenyl)-4-(4- hexyloxyphenyl)-4H-1,2,4-triazole Segments 104 4-1 Introduction 105 4-2 Experimental 106 4-3 Result and Discussion 107 4-3-1 Synthesis and Characterization 107 4-3-2 Optical Properties 107 4-3-3 Electrochemical Properties 111 4-3-4 Device Properties 113 4-4 Summary 114 Chapter 5 Optical and Electrochemical Properties of Copoly(aryl ether)s Consisting of Alternate 2,5-Distyrylbenzene and Electron-transporting Oxadiazole or Triazole Derivatives 115 5-1 Introduction 116 5-2 Experimental 118 5-3 Results and Discussion 119 5-3-1 Synthesis and Characterization 119 5-3-2 Optical Properties 119 5-3-3 Electrochemical Properties 127 5-4 Summary 130 Chapter 6 Copoly(aryl ether)s with electron-transporting 2,7-bis(3-(trifluoromethyl)phenyl)-9,9-dihexylfluorene segments: synthesis, optical, and electrochemical properties 131 6-1. Introduction 132 6-2. Experimental 133 6-3. Results and Discussion 134 6-3-1. Synthesis and Characterization 134 6-3-2. Optical Properties 135 6-3-3. Electrochemical Property 139 6-4. Summary 142 Chapter 7 Poly(p-phenylenevinylene) Derivatives Containing Electron-transporting Aromatic Triazole or Oxadiazole Segments 143 7-1 Introduction 144 7-2 Experimental Section Materials. 145 7-3-1 Synthesis and Characterization of Copolymers. 145 7-3-2 Optical properties. 147 7-3-3 Electrochemical Properties. 150 7-4 Summary 157 Chapter 8 Poly(p-phenylene vinylene) Derivatives Containing Triazole or Oxadiazole Segments: Connector Effect in Optical, Electrochemical, and Electroluminescent Properties 158 8-1 Introduction 159 8-2 Experimental Section 160 8-3 Results and Discussion 162 8-3-1 Synthesis and Characterization of Polymers. 162 8-3-2 Optical properties. 164 8-3-3 Electrochemical Properties. 169 8-3-4 Device Properties 175 8-4 Summary 178 Chapter 9 Conclusion 179 Referencnces and Notes 181 Appendix . 189 Curriculum Vitae 189 List of Publications 190

    References and Notes
    [1] Destriau, G. J. Chem. Phys. 1936, 33, 587, 625.
    [2] Ohnishi H. Electroluminescent display materials. Ann Rev. Mater. Res. 1989;19:83, 101.
    [3] Matsumoto S, editor. Electronic display devices. New York: Wiley; 1990. Chapter 5; p. 180.
    [4] Pope M, Kallmann HP, Magnante P. Electroluminescence in organic crystals. J. Chem. Phys. 1963, 38, 2042.
    [5] Leclerc, M. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867.
    [6] Vincett PS, Barlow WA, Hann RA, Roberts GG. Thin Solid Films 1982, 94, 476.
    [7] Partridge RH. Polymer 1983, 24, 733.
    [8] Tang CW, Van Slyke SA. Appl. Phys. Lett. 1987, 51, 913.
    [9] Clery D. Science 1994, 263, 1700.
    [10] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    [11] Dini, D. Chem. Mater. 2005, 17, 1933.
    [12] Kafafi, Z. H. Organic Electroluminescence US Naval Research Lab, Washington, DC, USA, 2005, p.27.
    [13] Bernanose, A. J.Chin. Phy. 1955, 52, 369.
    [14] Karl, N. Defect Control in Semiconductors, Vol. 2, K. Sumino, Ed., North Holland, Amsterdam, 1990, p1725.
    [15] Kalinowski, J. Electronic Phenomena in Organic Solids, Wiley-VCH, Weinheim, 2004, p.25.
    [16] Kalinowski, J. Mol. Cryst. Liq. Cryst. 2001, 355, 231.
    [17] Kalinowski, J.; Stampor, W.; Szmytowski, J. Polish. J. Chem. 2002, 76, 249.
    [18] Szmytowski, J.; Stampor, W.; Kalinowski, J. .; Kafafi, Z.H. Appl. Phys. Lett. 2002, 80, 1456.
    [19] Br´edas JL,Chance RR, Silbey R, Nicolas Gand Durand P, Phys. Rev. B 1982, 26, 371.
    [20] Kao KC and Hwang W, Electrical Transport in Solids 1981, Pergamon Press.
    [21] Kafafi, Z. H. Organic Electroluminescence US Naval Research Lab, Washington, DC, USA, 2005, p.223.
    [22] Kocacic, P.; Kyriakis, A. J. Am. Chem. Soc. 1963, 85, 454.
    [23] (a) Grignard, V. C.R. Acad. Sci. 1900, 130, 1322. (b) Rehahn, M.; Schluter, A. D.; Wegner, G.; Feast, W. J. Polymer 1989, 30, 1054.
    [24] Mccullough, R. D. Adv. Mater. 1998, 10, 93.
    [25] Wu, X. M.; Chen, T. A. Macromolecules 1995, 28, 2101.
    [26] An, B. K. ; Kim Y. H.; Shin, D. C; Park, S. Y.; Yu, H. S.; Kwon, S. K. Macromolecules 2001, 34, 3993.
    [27] Scherf, U. Top. Curr. Chem. 1999, 201, 164.
    [28] Hadziioannou, G.; Hutten, van P. F. Semiconducting Polmers, Wiely, Germany, 2000, chapter 16.
    [29] Suzuki, A. Pure Appl. Chem. 1991, 63, 419.
    [30] Janietz, S. ; Bradley, D. ; Grell, M. ; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
    [31] Logdlund, M.; Salaneck, W. R.; Meyers, F.; Bre´das, J. L.; Arbuckle, G. A.; Friend, R. H.; Holmes, A. B.; Froyer, G. Macromolecules 1993, 26, 3815.
    [32] Stille, J. K. Amgew. Chem. Int. Ed. 1986, 25, 508.
    [33] McMurry, J. E. Chem. Rev. 1989, 89, 1513.
    [34] Sonogashira, K.; Tohda, Y.; Itoh, Y. Chem. Lett. 1993, 1085.
    [35] Kloppenburg, L.; Song, D.; Bunz, U. H. F. J. Am. Chem. Soc. 1998, 120, 7973.
    [36] Conticello, V. P.; Gin, D. L.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 9708.
    [37] Lawrence, N. J. The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach, J. M. J. Williams, Ed., Oxford University Press, New York, 1996.
    [38] Laue, T.; Plagens, A. Named Organic Reactions, 2nd Ed., John Wiley& Sons, New York, 1999, 164.
    [39] (a) Wessling, R. A.; J. Polym. Sci., Polym. Symp. 1985, 72, 55. (b) Wessling, R. A.; Zimmerman, R. G. US Patent 3,401,152; 1968.
    [40] Jin, J. I.; Park, C. K.; Shim, H. K. Macromolecules 1993, 26, 1779.
    [41] Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci. 1966 A-1, 4, 1337.
    [42] Hsieh, B. R.; Yu, Y.; Lee, H. K.; Vanlaeken, A. C. Macromolecules 1997, 30, 8094.
    [43] Jin, S.-H.; Park, H.-J.; Kim, J. Y.; Lee, K.; Lee, S.-P.; Moon, D.-K.; Lee, H.-J.; Gal, Y.-S. Macromolecules 2002, 35, 7532-7534
    [44] Scherf, U.; List, E. W. J. Adv. Mater. 2002, 14, 477.
    [45] Yamamoto, T.; Morita, A.; Muyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H., Nakamura, Y.; Kanbara, T. Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214.
    [46] (a) Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007. (b) Kreyenschimdt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J; Karg, S; Chen, W; Lee, V. Y.; Scott, J. C. Miller, R. D. Macromolecules 1998, 31, 1099.
    [47] (a) Inbasekaran, M.; Wu, W.; Woo, E. P. US Patent 5,777,070 to Dow Company; 1998. (b) Inbasekaran, M.; Shiang, W. R.; Woo, E. P.; Roof. G. R. US Patent 5,962,631 to Dow Company 1999.
    [48] Fanta, P. E. Chem. Rev. 1964, 64, 613.
    [49] Claesson, G.; Gehm, R.; Kern, W. Makromol. Chem.1949, 7, 46.
    [50] (a) Kossmehl, G.; Bunsenges B. Phys. Chem. 1979, 83, 417. (b) Gilch H. G.; Wheelright, W. L. J. Polym. Sci., Part A: Poly. Chem. 1996, 4, 1337.
    [51] (a) Bradley, D. D. C. Adv. Mater. 1992, 4, 756. (b) Greenham, N. C.; Samuel, L. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y.A.R.R.; Moratti, S. C.; Holmes, A. B; Friend R. H. Chem. Phys. Lett. 1995, 241,89.
    [52] (a) Chuah, B. S.; Cacialli, F.; Santos, D. A.; Feeder, N. ; Davies, J. E. ; Moratti, S. C.; Homes, A. B.; Friend, R. H.; Breda, J. L. Synth. Met. 1999, 102, 935. (b) Cacialli, F.; Chuah, B. S.; Friend, R. H.; Moratti, S. C. ; Holmes, A. B. Synth. Met. 2000, 111, 155.
    [53] Riehn, R.; Morgado, J.; Iqbal, R.; Moratti, S. C.; Holmes, A. B.; Volta, S.; Cacialli, F. Macromolecules 2000, 33, 3337.
    [54] Anderson, M. R.; Yu, G.; Heeger, A. J. Synth. Met. 1997, 85, 1275.
    [55] Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M. ; Rothberg, L. J.; Chandross, E. A. Science 1995, 117, 11976.
    [56] Grice, A. W.; Tajbakhsh, A.; Burn, P. L.; Bradley, D. D. C. A. J. Adv. Mater. 1997, 15, 1174-1178.
    [57] Yang, X.; Hua, Y.; Yin, S.; Wang, Z.; Hou, Y.; Xu, Z.; Xu, X.; Peng, J.; Li, W. Synth. Met. 2000,111, 455.
    [58] Meng, H.; Huang, W. J. Organomet. Chem. 2000, 65, 3894.
    [59] Peng, Z. H.; Bao, Z. N.; Galvin, M. E. Chem. Mater. 1998,10, 2086.
    [60] Yu, W. L.; Meng, H.; Pei, J.; Huang, W. J. Am. Chem. Soc. 1980, 120, 1108.
    [61] Ohmori, Y.; Uchida, A.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, 1941.
    [62] Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
    [63] (a) Ranger, M.; Leclerc, M. J. Chem. Soc. Chem. Commun. 1997, 1597; (b) Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
    [64] (a) Ranger, M.; Leclerc, M. J. Chem. Soc. Chem. Commun. 1997, 1597; (b) Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
    [65] Haibo, X.; Bing, L.; He, T. Polymer 2005, 46, 5707.
    [66] Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mu1llen, K. Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
    [67] Partridge, R. H. Polymer 1983, 24, 755.
    [68] Kido, J.; Shinoya, H.; Nagai, K. Appl. Phys. Lett. 1995, 67, 2281.
    [69] Zhang, A.; Von Seggern H.; Pakbaz, K.; Kraabel, B.; Schmidt, K.H.W.; Heeger, A. J.; Synth. Met. 1994, 62, 35.
    [70] (a) Burn, P. L.; Holmes, A. B.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R. W. Nature 1992, 256, 47. (b) Kraft, A.; Burn, P. L.; Holmes, A. B.; Bradley, D. D. C.; Brown, A. R.; Friend, R. H.; Gymer, R. W. Synth. Met. 1993, 55, 936.
    [71] Padmanaban, G.; Ramakrishnan, S. J. Am. Chem. Soc. 2000, 122, 2244.
    [72] Yang, Z.; Karasz, F. E.; Geise, H. J. Macromolecules 1993, 26, 6570.
    [73] Yang, Z.; Hu, B.; Karasz, F. E. J. Macromol. Sci., Pure Appl. Chem. 1998; 35, 233.
    [74] Sun, R. G.; Wang, Y. Z.; Zheng, G. B.; Kyllo, E. M.; Gustafson, T. L.; Epstein, A. J. Appl. Phys. Lett. 2000, 76, 634.
    [75] Burn, P. L.; Holmes, A. B.; Kraft, A; Brown, A. R.; Bradley, D. D. C.; Friend, R. H.; Mater. Res. Soc. Symp. Proc. 1992, 247, 647.
    [76] (a) Lai, R. Y.; Fabrizio, E. F.; Lu, L.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2001, 123, 9112. (b) Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631.
    [77] (a) Logdlund, M.; Salaneck, W. R.; Meyers, F.; Bredas, J. L.; Arbuckle, G.. A.; Friend,
    R. H.; Holmes, A. B.; Froyer, G. Macromolecules 1993, 26, 3815. (b) Delugeard, Y.; Desuche, J.; Baudour, J. L. Acta. Crystallogr. Sect. B 1976, 32, 702. (c) Baudour, J. L.; Cailleau, H. ; Yelon, W. B. Acta. Crystallogr. Sect. B 1977, 33, 1773. (d) Baudour, J. L.; Delugeard, Y.; Rivet, P. Acta. Crystallogr. Sect. B 1978, 34, 625.
    [78] Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis, 5th ed., Saunders Golden Sunburst Series, 1998, chapter 15.
    [79] Kafafi, Z. H. Organic Electroluminescence US Naval Research Lab, Washington, DC, USA, 2005, p.58.
    [80] Kalinowski, J.; Giro, G.; Gocchi, M.; Fattori, V.; Di Macro, P. Appl. Phys. Lett. 2000, 76, 2352.
    [81] (a) Grandlund, T.; Petterson, L. A. A.; Anderson, M. R.;Inganas, O. J. Appl. Phys. 1997, 81, 8097. (b) Giro, G.; Gocchi, M.; Kalinowski, J.; Di Macro, P.; Fattori, V. Chem. Phys.Lett. 2000, 318, 137.
    [82] http://en.wikipedia.org/wiki/Electroluminescence
    [83] (a) Youngmi Kim, Jean Bouffard, Steven E. Kooi, and Timothy M. Swager J. Am. Chem. Soc. 2005, 127, 13726. (b) Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. Adv. Mater. 2005, 17, 2974.
    [84] (a) Tonzola, C. J.; Alam, M. M.; Jenekhe, S. A. Macromolecules 2005, 38, 9539. (b) Wu, T.-Y.; Sheu, R.-B.; Chen, Yun Macromolecules 2004, 37, 725. (c) Hwang, S. W.; Chen, Y. Macromolecules 2001, 34, 2981.
    [85] Cornil, J.; Beljonne, D.; Santos, D. A.; Bredas, J. L. Synth. Met. 1996, 76, 101.
    [86] Woo, H. S.; Lhost, O.; Graham, S. C.; Bre´das, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59, 13.
    [87] Tian, B.; Zerbi, G.; Schenk, R.; Mullen, K. J. Chem. Phys. 1991, 95, 3191.
    [88] Lee, Y. Z.; Chen, X.; Chen, M.-C.; Chen, S-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
    [89] May, V.; Kuhn, O. Charge and Energy Transfer Dynamics in Molecular Systems, 2nd ed., Wiley-VCH, 2003, p.408.
    [90] Dresselhaus, M.S.; Dresselhaus, G. Adv. Phys. 1981, 30, 139.
    [91] Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
    [92] Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, L. Macromolecules 2002, 35, 6782.
    [93] (a) http://hackman.mit.edu/6977/handouts/6.977.lecture.7.pdf (b) http://www.chem.vu.nl/acas/Homepages/zwan/lectures/Egmond_3.ppt (c) http://www.iupac.org/goldbook/D01654.pdf (d) http://www.iupac.org/goldbook/F02488.pdf (e) http://turmac13.chem.columbia.edu/PPT_db/CCMMPEX_Ch7_1_pres.ppt
    [94] Kafafi, Z. H. Organic Electroluminescence US Naval Research Lab, Washington, DC, USA, 2005, p.276.
    [95] May, V.; Kuhn, O. Charge and Energy Transfer Dynamics in Molecular Systems, 2nd ed., Wiley-VCH, 2003, chapter 8.
    [96] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic /
    Plenum Publishers: New York, 1999, chapter 13.
    [97] Roger, D. W. Computational Chemistry Using the PC, 3rd ed., Wiley-Interscience, 2003, chapter 3.
    [98] (a)http://cmm.info.nih.gov/modeling/guide_documents/tocs/computation_software.html (b) http://en.wikipedia.org/wiki/Computational_chemistry (c) http://www.ym.edu.tw/~sysheu/summer/5-ST-MMFF-2005.pdf
    [99] Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis, 5th ed., Saunders Golden Sunburst Series, 1998, chapter 14.
    [100] Gosser, D. K. Cyclic Voltammetry Simulation and Analysis of Reaction Mechanism, 1st ed., VCH, New York, 1993, chapter 2.
    [101] Schubert, E. F. Light-Emitting Diodes, 1st ed., Cambridge University Press, 2003, p. 226.
    [102] (a) Jin, S.-H.; Kim, M.-Y.; Kim, J. Y.; Lee, K.; Gal, Y.-S. J. Am. Chem. Soc. 2004, 126, 2474. (b) Liao, L.; Pang , Y.; Ding, L.; Karasz, F. E. Macromolecules 2002, 35, 3819. (c) Shu, C.-F.; Dodda, R.; Wu, F.-I.; Liu, M.-S.; Jen, A. K.-J. Macromolecules 2003, 36, 6698. (e) Mikroyannidis, J. A.; Spiliopoulos, I. K.; Kasimis, T. S.; Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 9295. (f) Mikroyannidis, J. A.; Barberis, V. P.; Ding, L.; Karasz, F. E. J. Polym. Sci.; Part A: Polym. Chem. 2004, 42, 3212.
    [103] (a) Lee, D. W.; Kwon, K.-Y.; Jin, J.-I.; Park, Y.; Kim, Y.-R.; Hwang, I.-W. Chem. Mater. 2001, 13, 565. (b) Chen, Y.; Sheu, R.-B.; Wu, T. J. Polym. Sci.; Part A: Polym. Chem. 2003, 41, 725.
    [104] Menon, A.; Dong, H.; Niazimbetova, Z.-I.; Rothberg, L.-J.; Galvin, M.-E. Chem. Mater. 2002, 14, 3668.
    [105] (a) Zheng, M.; Gurel, E. E.; Lahti, P. M.; Karasz, F. E. Macromolecules 2001, 34, 4124-4129. (b) Hwang, S-W.; Chen, Y. Macromolecules 2002, 35, 5438-5443.
    [106] Cho, N. S.; Hwang, D.-H.; Lee, J.-I.; Jung, B.-J.; Shim, H.-K. Macromolecules 2002, 35, 1224.
    [107] (a) Hwang, S.-W.; Chen, S.-H.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2215. (b) Chen, S.-H.; Hwang, S.-W.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 883. (c) Hwang, S.-W.; Chen, Y.; Chen, S.-H. J. Polym. Sci. Part B: Polym. Phys. 2003, 42, 333. (d) Chen, Y.; Hwang, S.-W.; Yu, Y.-H. J. Polymer 2003, 44, 3827.
    [108] (a) Shaikh, A. A. G.; Hlil, A. R.; Shaikh, P. A.; Hay, A. S. Macromolecules 2002, 35, 8728. (b) Gillo, M.; Iannelli, P.; Laurienzo, P.; Malinconico, M.; Roviello A.; Mormile, P.; Prtti, L. Chem. Mater. 2002, 14, 1539.
    [109] (a) Liu, Y.; Liu, M. S.; Jen, A. K.-Y. Acta. Polym. 1999, 50, 105. (b) Kim, H. K.; Ryu, M.-K.; Kim, K.-D.; Lee, S.-M.; Cho, S.-W.; Park, J.-W. Macromolecules 1998, 31, 1114. (c) Ahn, T.; Shim, H.-K. Macromol. Chem. Phys. 2001, 202, 3180. (d) Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J.; Chandross, E. A. Science 1995, 267, 1969.
    [110] (a) Kim, J. J.; Kim, K.-S.; Beak, S.; Kim, H.; Ree, M. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 1173. (b) Kim, H.-C.; Kim, J.-S.; Kim, K.-S.; Park, H.-K.; Beak, S.; Ree, M. J. Polym. Sci. Part A: Polym. Chem. 2004., 40, 825.
    [111] (a) Lu, L.; Jenekhe, S. A. Macromolecules 2001, 34, 6249. (b) Monkman, A. P.; Palsson, L.-O.; Higgins, R. W. T.; Wang, C.; Bryce, M. R.; Batsanov, A. S.; Howard, J. A. K. J. Am. Chem. Soc. 2002, 124, 6049. (c) Alam, M. M.; Jenekhe, S. A. J. Phys. Chem. B 2002, 106, 11172.
    [112] Yang, N. C.; Park, Y. H.; Suh, D. H. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 674.
    [113] (a) Hwang, S. W.; Chen, Y.; Polymer 2000, 41, 6581. (b) Zheng, S.; Shi, J.; Mateu, R. Chem. Mater. 2000, 12, 1814. (c) Marko, S.; Rebecca, H. J.; Ananth, D. J. Am. Chem. Soc. 1996, 118, 1213. (d) Hidekaru, D.; Motoi, K.; Kenji, O. Yasuhiko, S. Chem. Mater. 2003, 15, 1080.
    [114] (a) Cirpan, A.; Ding, L.; Karasz, F. E. Polymer 2005, 46, 811. (b) Assaka, A. M.; Rodrigues, P. C.; Oliveira, A. R. M.; Ding, L.; Hu, B.; Karasz, F. E.; Akcelrud, L. Polymer 2004, 45, 7071.
    [115] (a) Sanda, F.; Nakai, T.; Kobayashi, N.; Masuda, T.; Macromolecules 2004, 37, 2703. (b) Lu, J.; Tao, Y.; D'iorio, M.; Li, Y.; Ding, J.; Day, M.; Macromolecules 2004, 37, 2442.
    [116] (a) Zhang, Z. B.; Fujiki, M.; Tang, H. Z.; Motonaga, M.; Torimitsu, K. Macromolecules 2002, 35, 1988. (b) Takihana, Y.; Shiotsuki, M.; Sanda, F.; Masuda, T. Macromolecules 2004, 37, 7578.
    [117] Chen, S.-H. ; Chen, Y. Macromolecules 2005, 38, 53.
    [118] (a) Sarker, A. M.; Ding, L.; Lahti, P. M.; Karasz, F. F. Macromolecules 2002, 35, 223. (b) Liu, B.; Yu, W.-L.; Lai, Y.-H.; Huang, W. Macromolecules 2002, 35, 4975. (c) Fan, Q.-L.; Lu, S.; Lai, Y.-H.; Hou, X.-Y.; Huang, H. Macromolecules 2003, 36, 6976.
    [119] (a) Lai, R. Y.; Fabrizio, E. F.; Lu, L.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2001, 123, 9112. (b) Lai, R. Y.; Kong, X.; Jenekhe, S. A.; Bard, A. J. J. Am. Chem. Soc. 2003, 125, 12631.
    [120] (a) Kim, S. W.; Shim, S. C.; Jung, B.-J.; Shim H.-K. Polymer 2002, 43, 4297. (b) Lu, J.; Miyatake, K.; Hlil, A. R.; Hay, A. S. Macromolecules 2001, 34, 5860.
    [121] Chen, Y.;. Hwang, S.-W; Yu, Y.-H. Polymer 2003, 44, 3827.
    [122] MNDO semi-empirical calculations performed with Gaussian R 98W by Gaussian, Inc.
    [123] Wu, T.-Y.; Sheu, R.-B.; Chen, Y. Macromolecules 2004, 37, 725.
    [124] (a)Yanga, N. C.; Changb, S.; Suh, D. H. Polymer 2003, 44, 2143. (b) Keyes, T. E.; Frster, R. J.; Bond, A. M.; Miao, W. J. Am. Chem. Soc. 2001, 123, 2877.
    [125] Alam, M. M.; Tonzola, C. J.; Jenekhe, S. A. Macromolecules 2003, 36, 6577.
    [126] Morgado, J.; Moons, E.; Friend, R.H.; Cacialli, F. Adv. Mater. 2001, 13, 810.
    [127] S.-H. Chen, Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5083.
    [128] S.-H. Chen, Y. Chen, Polymer 2005, 46, 10544.
    [129] Kimoto, A.; Masachika, K.; Cho, J.-S.; Higuchi, M.; Yamamoto, K. Chem. Mater. 2004, 16, 5706.
    [130] Lakowicz, J. R. “Principles of Fluorescence Spectroscopy”, 2nd edition; Kluwer Academic / Plenum Publishers: New York, 1999, p. 371.
    [131] Zhang, C.; Braun, D.; Heeger, AJ. J. Appl. Phys. 1993, 73, 5177.
    [132] Papadimitrakopoulos, F.; Konstadinidis, K.; Miller, T. M.; Opila, R.; Chandross, E. A.; Galvin, M. E. Chem. Mater. 1994, 6, 1563.
    [133] Scurlock, R. D.; Wang, B.; Ogilby, P. R.; Sheats, J. R.; Clough, R. L. J. Amer. Chem. Soc. 1995, 117, 10194.
    [134] Rothberg, L. J.; Yan, M.; Son, S.; Galvin, M. E.; Kwock, E. W.; Miller, T. M.; Katz, H. E.; Haddon, R. C.; Papadimitrakopoulos, F. Synth. Met. 1996, 78, 231.
    [135] Yan, M.; Rothberg, L. J.; Papadimitrakopoulos, F.; Galvin, M. E.; Miller, T. M. Phys. Rev. Lett. 1994, 73,744.
    [136] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals (Clarendon Press, Oxford, 1982).
    [137] Knox, R. S. J. Phys. Chem.1994, 98, 7270.
    [138] Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hymene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99, 9155.
    [139] Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54, 2308.
    [140] Son, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Science 1995, 269, 376.
    [141] (a) Kwok, C. C.; Wong, M. S. Macromolecules 2001, 34, 6821.(b) Pei, J.; Yu, W.-L.; Ni, J.; Lai, Y.-H.; Huang, W.; Heeger, A. J. Macromolecules 2001, 34, 7241.

    下載圖示 校內:2008-07-05公開
    校外:2010-07-05公開
    QR CODE