簡易檢索 / 詳目顯示

研究生: 王姝淳
Wang, Shu-Chun
論文名稱: 探討導眠靜和異丙酚對於小鼠萊氏細胞之細胞凋亡機制研究
The Mechanism of Midazolam and Propofol on Mouse Leydig Cell Lines Apoptosis
指導教授: 黃步敏
Huang, Bu-Miin
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 88
中文關鍵詞: 導眠靜異丙酚硫胱氨酸蛋白酶細胞凋亡萊氏腫瘤細胞有絲分裂活化蛋白質激酶訊息路徑蛋白激酶B 訊息路徑內質網壓力細胞週期
外文關鍵詞: midazolam, propofol, caspase cascade, apoptosis, Leydig tumor cell, MAPK pathway, Akt pathway, ER stress, cell cycle
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據統計,西方國家的睪丸癌發生率有逐年上升的趨勢,從0.0037%上升到0.0059%,而惡性睪丸癌的治療方式多採取為手術結合化學藥物,因此尋找有效的抗癌藥物是非常重要的。導眠靜(midazolam)和異丙酚(propofol)都是具有麻醉和鎮定效果的藥物,主要透過調控中樞神經系內的GABA 受體,而達到鎮定效果。從之前的研究中,我們已經發現導眠靜能透過活化硫胱氨酸蛋白酶(caspase)路徑,進而誘發MA-10 小鼠萊氏腫瘤細胞走向細胞凋亡。在其他研究中,也發現到異丙酚能誘發內質網壓力進而造成肺癌細胞凋亡現象產生。然而導眠靜和異丙酚對於萊氏腫瘤細胞的抗癌能力和調控細胞凋亡的詳細機制尚未清楚。因此在本研究中會進一步探討。我們使用不同濃度的導眠靜和異丙酚處理MA-10 和TM3(小鼠萊氏細胞)細胞株。結果發現MA-10 和TM3 細胞分別30~150 或150~300 μM 導眠靜作用12 小時以後,其細胞存活率都有顯著的下降。而此兩種細胞經由300~600 μM 異丙酚作用24 小時以後,其細胞存活率也都有顯著的下降。利用流式細胞儀分析後,可觀察到subG1 期的顯著上升;透過細胞雙染試驗,更加驗證麻醉劑(導眠靜和異丙酚)確實會誘導這兩種細胞株走向細胞凋亡。此外,此兩種藥物也會促使硫胱氨酸蛋白酶(caspase-8, -9 and -3)的活化以及聚(腺苷二磷酸-核糖)多聚酶(Poly ADP ribose polymerase, PARP)的裂解。除此之外,在MA-10 細胞中,導眠靜造成Bax 移位和cytochrome C 的釋放進而誘發細胞凋亡。絲分裂活化蛋白質激酶(Mitogen-activated protein kinase,MAPK)訊息傳遞路徑的活化,包括ERK1/2, JNK, p38 蛋白,也參與在導眠靜對於TM3 細胞或異丙酚對於此兩種細胞所誘導的細胞凋亡當中。然而,在這兩種細胞中,異丙酚會近一步降低Akt 的磷酸化。另外,導眠靜透過誘發內質網壓力,進一步活化EIF2α 磷酸化、 ATF4、 ATF3 以及CHOP 蛋白表現,讓MA-10細胞產生凋亡。除此之外,導眠靜在MA-10 和TM3 細胞中,會透過調控p53 進而抑制cyclin A、cyclin B 和CDK1 的表現,而調控細胞週期。根據以上實驗結果發現,麻醉劑(導眠靜和異丙酚)在MA-10 和TM3 細胞中,透過活化硫胱氨酸蛋白酶和MAPK,進一步抑制Akt 訊息傳遞路徑,而誘發細胞凋亡。另外,導眠靜在MA-10 細胞中,能造成內質網壓力和調控細胞週期,進而誘發細胞凋亡。此外實驗結果也顯示出對於小鼠萊氏腫瘤來說,導眠靜比異丙酚更適合做為抗癌藥物。

    The incident rate of the testicular cancer is increasing in western world, and the overall incidence rate of testicular cancer rose over time, from 3.7 (per 100,000) in 1975 to 5.9 (per 100,000) in 2007. The treatment upon malignant testicular cancer is usually combined surgery with chemical drugs. Midazolam and propofol are widely used as sedative and anesthetic induction agents by modulating the different GABA receptors in the central nervous system. In previous study, we have found that midazolam could induce MA-10 mouse Leydig tumor cell apoptosis by activating caspase cascade. In addition, study has shown that propofol could induce apoptosis in lung cancer through endoplasmic reticulum (ER) stress. However, the detail mechanisms how midazolam and propofol regulating caspase and/or ER stress pathways in Leydig tumor cells remain elusive. In the present study, MA-10 cells and TM3 cells (a mouse Leydig normal cell line) were used with the treatments of midazolam or propofol. Results showed that cell viability significantly decreased by midazolam from 30 to 150 µM in MA-10 cells and from 150 to 300 µM in TM3 cells for 12 hr, respectively, in a dose-dependent manner (p<0.05). Cell viability of MA-10 and TM3 cells also significantly decreased as the dosage of propofol increased (300 to 600 μM) for 24 hr, respectively (p<0.05). In flow cytometry analysis, both midazolam and propofol significantly increased the amounts of subG1 phase cell numbers in both cell lines (p<0.05). AnnexinV/PI double staining further confirmed that two sedative agents induced apoptosis in both cell lines. Moreover, cleaved caspase-8, -9, -3 and/or PARP were significantly activated after treatment of midazolam and propofol in both cell lines. Besides, Bax translocation and cytochrome C release were also involved in midazolam-induced MA-10 cell apoptosis. In TM3 cell line, the phosphorylation of JNK, ERK1/2 and p38 were elevated by midazolam treatment. On the other hand, the expression of p-JNK, p-ERK1/2 and p-p38 were activated by propofol treatment in both cell lines, which indicated that two sedative agents could induce apoptosis through MAPK pathway. In addition, propofol diminished the phosphorylation of Akt to induce apoptosis in both cell lines. Furthermore, the expression of p-EIF2α, ATF4, ATF3 and CHOP could be induced by midazolam in both cell lines, which appeared that midazolam could induce apoptosis probably through endoplasmic reticulum (ER) stress. The expressions of cyclin A, cyclin B and CDK1 could be inhibited by midazolam through the regulation of p53 in MA-10 and TM3 cells, suggesting midazolam could regulate cell cycle to induce apoptosis in mouse Leydig cell lines. In conclusion, midazolam and propofol could induce cell apoptosis by activating caspases and MAPKs pathways, and inhibiting Akt pathway in mouse Leydig cell lines. In addition, midazolam could induce cell apoptosis through activation of ER stress and regulation of cell cycle, and midazolam might be a better anticancer therapy than propofol in Leydig cancer.

    TABLE OF CONTENTS ABSTRACTS Chinese abstract.........................................................................................................I English abstract.......................................................................................................III ACKNOWLEDGEMENTS........................................................................................V TABLE OF CONTENTS..........................................................................................VI LIST OF FIGURES...............................................................................................VIII INTRODUCTION........................................................................................................1 MATERIALS AND METHODS Chemicals...................................................................................................................6 Cell Culture................................................................................................................7 Morphology Observation............................................................................................7 MTT Viability Test.....................................................................................................8 Cell Cycle Analysis....................................................................................................8 Annexin V/PI Double Staining Assay.........................................................................9 Protein Extraction and Western Blot…………...........................................................9 Mitochondrial Protein Isolation................................................................................10 Statististic.................................................................................................................10 RESULTS Midazolam and propofol induced morphological changes related to cell death upon mouse Leydig cell line..............................................................................................11 Midazolam and propofol decreased mouse Leydig cell viability in time- and dose-dependent manners..........................................................................................11 Midazolam and propofol regulated cell cycle upon mouse Leydig cell lines............12 Midazolam and propofol induced cell apoptosis in mouse Leydig cell lines............13 The involvement of caspase cascade in midazolam- and propofol-induced apoptosis in mouse Leydig cell lines.........................................................................................14 The effects of midazolam on the expressions of Fas ligand and Fas in mouse Leydig cell lines....................................................................................................................15 The effects of midazolam on the expressions of mitochondrial pathway in MA-10 cells...........................................................................................................................16 The involvement of MAPK pathways in midazolam- and propofol-induced apoptosis in mouse Leydig cell lines.........................................................................................17 The involvement of Akt pathways in midazolam- and propofol-induced apoptosis in mouse Leydig cell lines............................................................................................18 The involvement of ER stress pathways in midazolam-induced apoptosis in mouse Leydig cell lines........................................................................................................19 The involvement of cell cycle in midazolam-induced apoptosis in mouse Leydig cell lines..........................................................................................................................21 DISCUSSION.............................................................................................................23 REFERENCES..........................................................................................................82

    Boxem M (2006) Cyclin-dependent kinases in C. elegans. Cell division 1:6.
    Busettini C, Frolich MA (2014) Effects of mild to moderate sedation on saccadic eye movements. Behavioural brain research 272:286-302.
    Cano E, Hazzalin CA, Mahadevan LC (1994) Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Molecular and cellular biology 14:7352-7362.
    Cassinello F, Prieto I, Del Olmo M, Rivas S, Strichartz GR (2015) Cancer surgery: how may anesthesia influence outcome? Journal of clinical anesthesia S0952:54-59.
    Chong WS, Hyun CL, Park MK, Park JM, Song HO, Park T, Lim YS, Cho CK, Kang PS, Kwon HU (2012) Midazolam protects B35 neuroblastoma cells through Akt-phosphorylation in reactive oxygen species derived cellular injury. Korean journal of anesthesiology 62:166-171.
    Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochemical and biophysical research communications 197:40-45.
    Creagh EM, Martin SJ (2001) Caspases: cellular demolition experts. Biochemical Society transactions 29:696-702.
    Cui WY, Liu Y, Zhu YQ, Song T, Wang QS (2014) Propofol induces endoplasmic reticulum (ER) stress and apoptosis in lung cancer cell H460. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 35:5213-5217.
    Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245-6251.
    Dou Y, Li Y, Chen J, Wu S, Xiao X, Xie S, Tang L, Yan M, Wang Y, Lin J, Zhu W, Yan G (2013) Inhibition of cancer cell proliferation by midazolam by targeting transient receptor potential melastatin 7. Oncology letters 5:1010-1016.
    Dou YL, Lin JP, Liu FE, Wang LY, Shu HH, Jiang N, Xie Y, Duan Q (2014) Midazolam inhibits the proliferation of human head and neck squamous carcinoma cells by downregulating p300 expression. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 35:7499-7504.
    Du QH, Xu YB, Zhang MY, Yun P, He CY (2013) Propofol induces apoptosis and increases gemcitabine sensitivity in pancreatic cancer cells in vitro by inhibition of nuclear factor-kappaB activity. World journal of gastroenterology : WJG 19:5485-5492.
    Gheorghisan-Galateanu AA (2014) Leydig cell tumors of the testis: a case report. BMC research notes 7:656.
    Ghori K, O'Driscoll J, Shorten G (2010) The effect of midazolam on neutrophil mitogen-activated protein kinase. European journal of anaesthesiology 27:562-565.
    Gniadecki R (2004) Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis. Biochemical and biophysical research communications 320:165-169.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science (New York, NY) 281:1309-1312.
    Green LM, Reade JL, Ware CF (1984) Rapid colorimetric assay for cell viability: application to the quantitation of cytotoxic and growth inhibitory lymphokines. Journal of immunological methods 70:257-268.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57-70.
    Harris CE, Grounds RM, Murray AM, Lumley J, Royston D, Morgan M (1990) Propofol for long-term sedation in the intensive care unit. A comparison with papaveretum and midazolam. Anaesthesia 45:366-372.
    Hein AL, Ouellette MM, Yan Y (2014) Radiation-induced signaling pathways that promote cancer cell survival (review). International journal of oncology 45:1813-1819.
    Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiological reviews 91:1219-1243.
    Hibi M, Lin A, Smeal T, Minden A, Karin M (1993) Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes & development 7:2135-2148.
    Hong JQ, Wu SH, Chen ZY, Zhuang WH, Gao HZ (2013) [Effect of midazolam on mantle cell lymphoma JeKo-1 cell line and its relevant mechanisms]. Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = Journal of experimental hematology / Chinese Association of Pathophysiology 21:1460-1463.
    Hsing CH, Chen YH, Chen CL, Huang WC, Lin MC, Tseng PC, Wang CY, Tsai CC, Choi PC, Lin CF (2012) Anesthetic propofol causes glycogen synthase kinase-3beta-regulated lysosomal/mitochondrial apoptosis in macrophages. Anesthesiology 116:868-881.
    Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science (New York, NY) 298:1911-1912.
    Kania E, Pajak B, Orzechowski A (2015) Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells. BioMed research international 2015:352794.
    Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochimica et biophysica acta 1813:558-563.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26:239-257.
    Khan AA, Jabeen M, Khan AA, Owais M (2013) Anticancer efficacy of a novel propofol-linoleic acid-loaded escheriosomal formulation against murine hepatocellular carcinoma. Nanomedicine (London, England) 8:1281-1294.
    Kim SR, Lee YC (2015) Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy, asthma & immunology research 7:106-117.
    Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. American journal of physiology Renal physiology 295:F323-334.
    Koromilas AE (2014) Roles of the translation initiation factor eIF2alpha serine 51 phosphorylation in cancer formation and treatment. Biochimica et biophysica acta.
    Kroemer G et al. (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell death and differentiation 16:3-11.
    Kuwabara M, Asanuma T, Niwa K, Inanami O (2008) Regulation of cell survival and death signals induced by oxidative stress. Journal of clinical biochemistry and nutrition 43:51-57.
    Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346-347.
    Lee JM, Lee JM, Kim KR, Im H, Kim YH (2015) Zinc preconditioning protects against neuronal apoptosis through the mitogen-activated protein kinase-mediated induction of heat shock protein 70. Biochemical and biophysical research communications 459:220-226.
    Lewis-Wambi JS, Jordan VC (2009) Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit? Breast cancer research : BCR 11:206.
    Li D, Wang C, Li N, Zhang L (2014) Propofol selectively inhibits nuclear factor-kappaB activity by suppressing p38 mitogen-activated protein kinase signaling in human EA.hy926 endothelial cells during intermittent hypoxia/reoxygenation. Molecular medicine reports 9:1460-1466.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491-501.
    Lin MC, Chen CL, Yang TT, Choi PC, Hsing CH, Lin CF (2012) Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo. Toxicology and applied pharmacology 265:253-262.
    Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M, Zhang Y, Wang Z, Wang J (2015) Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leukemia research 39:544-552.
    Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis : an international journal on programmed cell death 18:537-546.
    Long JS, Ryan KM (2012) New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 31:5045-5060.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. The Journal of biological chemistry 193:265-275.
    Luo K, Cao SS (2015) Endoplasmic reticulum stress in intestinal epithelial cell function and inflammatory bowel disease. Gastroenterology research and practice 2015:328791.
    Markman B, Dienstmann R, Tabernero J (2010) Targeting the PI3K/Akt/mTOR pathway--beyond rapalogs. Oncotarget 1:530-543.
    Micheau O, Solary E, Hammann A, Dimanche-Boitrel MT (1999) Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs. The Journal of biological chemistry 274:7987-7992.
    Mishra SK, Kang JH, Lee CW, Oh SH, Ryu JS, Bae YS, Kim HM (2013) Midazolam induces cellular apoptosis in human cancer cells and inhibits tumor growth in xenograft mice. Molecules and cells 36:219-226.
    Ohno S, Kobayashi K, Uchida S, Amano O, Sakagami H, Nagasaka H (2012) Cytotoxicity and type of cell death induced by midazolam in human oral normal and tumor cells. Anticancer research 32:4737-4747.
    Oliveira JB, Gupta S (2008) Disorders of apoptosis: mechanisms for autoimmunity in primary immunodeficiency diseases. Journal of clinical immunology 28 Suppl 1:S20-28.
    Olivier P, Simoneau-Roy J, Francoeur D, Sartelet H, Parma J, Vassart G, Van Vliet G (2012) Leydig cell tumors in children: contrasting clinical, hormonal, anatomical, and molecular characteristics in boys and girls. The Journal of pediatrics 161:1147-1152.
    Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell proliferation 45:487-498.
    Pang S, Zhang L, Shi Y, Liu Y (2014) Unclassified mixed germ cell-sex cord-stromal tumor with multiple malignant cellular elements in a young woman: a case report and review of the literature. International Journal of Clinical and Experimental Pathology 7:5259-5266.
    Paul-Samojedny M, Suchanek R, Borkowska P, Pudelko A, Owczarek A, Kowalczyk M, Machnik G, Fila-Danilow A, Kowalski J (2014) Knockdown of AKT3 (PKBgamma) and PI3KCA suppresses cell viability and proliferation and induces the apoptosis of glioblastoma multiforme T98G cells. BioMed research international 2014:768181.
    Radke J (1992) [Analgesia and sedation in intensive care patients]. Der Anaesthesist 41:793-808.
    Sanderson TH, Gallaway M, Kumar R (2015) Unfolding the Unfolded Protein Response: Unique Insights into Brain Ischemia. International journal of molecular sciences 16:7133-7142.
    Sarosiek KA, Chi X, Bachman JA, Sims JJ, Montero J, Patel L, Flanagan A, Andrews DW, Sorger P, Letai A (2013) BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Molecular cell 51:751-765.
    Shen Y, Yang J, Zhao J, Xiao C, Xu C, Xiang Y (2015) The switch from ER stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 signals: A survival mechanism in methotrexate-resistant choriocarcinoma cells. Experimental cell research.
    So EC, Chang YT, Hsing CH, Poon PW, Leu SF, Huang BM (2010) The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicology letters 192:169-178.
    So EC, Lin YX, Tseng CH, Pan BS, Cheng KS, Wong KL, Hao LJ, Wang YK, Huang BM (2014) Midazolam induces apoptosis in MA-10 mouse Leydig tumor cells through caspase activation and the involvement of MAPK signaling pathway. OncoTargets and therapy 7:211-221.
    Somasundaram K (2000) Tumor suppressor p53: regulation and function. Frontiers in bioscience : a journal and virtual library 5:D424-437.
    Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? Journal of signal transduction 2011:792639.
    Stevens MF, Werdehausen R, Gaza N, Hermanns H, Kremer D, Bauer I, Kury P, Hollmann MW, Braun S (2011) Midazolam activates the intrinsic pathway of apoptosis independent of benzodiazepine and death receptor signaling. Regional anesthesia and pain medicine 36:343-349.
    Straten P, Andersen MH (2010) The anti-apoptotic members of the Bcl-2 family are attractive tumor-associated antigens. Oncotarget 1:239-245.
    Su Z, Hou XK, Wen QP (2014) Propofol induces apoptosis of epithelial ovarian cancer cells by upregulation of microRNA let-7i expression. European journal of gynaecological oncology 35:688-691.
    Sun X, Gu J, Chi M, Li M, Lei S, Wang G (2014) Activation of PI3K-Akt through taurine is critical for propofol to protect rat cardiomyocytes from doxorubicin-induced toxicity. Canadian journal of physiology and pharmacology 92:155-161.
    Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ (2002) ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. The Journal of biological chemistry 277:12710-12717.
    Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nature reviews Molecular cell biology 9:231-241.
    Tewari R, Sharma V, Koul N, Sen E (2008) Involvement of miltefosine-mediated ERK activation in glioma cell apoptosis through Fas regulation. Journal of neurochemistry 107:616-627.
    van Engeland M, Ramaekers FC, Schutte B, Reutelingsperger CP (1996) A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry 24:131-139.
    Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature reviews Cancer 2:489-501.
    Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nature reviews Drug discovery 4:307-320.
    Wang P, Chen J, Mu LH, Du QH, Niu XH, Zhang MY (2013) Propofol inhibits invasion and enhances paclitaxel- induced apoptosis in ovarian cancer cells through the suppression of the transcription factor slug. European review for medical and pharmacological sciences 17:1722-1729.
    Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W (2009) Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Molecular cancer 8:8.
    Wu KC, Yang ST, Hsia TC, Yang JS, Chiou SM, Lu CC, Wu RS, Chung JG (2012) Suppression of cell invasion and migration by propofol are involved in down-regulating matrix metalloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer research 32:4833-4842.
    Ye Z, Jingzhong L, Yangbo L, Lei C, Jiandong Y (2013) Propofol inhibits proliferation and invasion of osteosarcoma cells by regulation of microRNA-143 expression. Oncology research 21:201-207.
    Yilmaz E, Hough KA, Gebhart GF, Williams BA, Gold MS (2014) Mechanisms underlying midazolam-induced peripheral nerve block and neurotoxicity. Regional anesthesia and pain medicine 39:525-533.
    Yon JH, Daniel-Johnson J, Carter LB, Jevtovic-Todorovic V (2005) Anesthesia induces neuronal cell death in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 135:815-827.
    Yu D, Jiang Y, Gao J, Liu B, Chen P (2013) Repeated exposure to propofol potentiates neuroapoptosis and long-term behavioral deficits in neonatal rats. Neuroscience letters 534:41-46.
    Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes & development 27:355-371.
    Zhang B, Wu T, Wang Z, Zhang Y, Wang J, Yang B, Zhao Y, Rao Z, Gao J (2015) p38MAPK activation mediates tumor necrosis factor-alpha-induced apoptosis in glioma cells. Molecular medicine reports 11:3101-3107.
    Zhang C, Chen Z, Zhou X, Xu W, Wang G, Tang X, Luo L, Tu J, Zhu Y, Hu W, Xu X, Pan W (2014) Cantharidin induces G/M phase arrest and apoptosis in human gastric cancer SGC-7901 and BGC-823 cells. Oncology letters 8:2721-2726.
    Zhou C, Zhao XM, Li XF, Wang C, Zhang XT, Liu XZ, Ding XF, Xiang SL, Zhang J (2013) Curcumin inhibits AP-2gamma-induced apoptosis in the human malignant testicular germ cells in vitro. Acta pharmacologica Sinica 34:1192-1200.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE