| 研究生: |
林鼎鈞 Lin, Ding-Chung |
|---|---|
| 論文名稱: |
車輛使用酒精汽油對臺南地區臭氧濃度變化影響研究 A Simulation Study of the Vehicles using Ethanol Fuel Impact Ozone Concentrations in Tainan |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 酒精汽油 、臭氧 、三維網格模式 、臭氧敏感性物種 |
| 外文關鍵詞: | Gasohol, Ozone Three-dimensional grid pattern, Ozone-sensitive species |
| 相關次數: | 點閱:181 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
南臺灣地區臭氧污染仍待改善,如何有效控管臭氧前驅物排放以有效降低臭氧濃度乃極重要任務,移動源油品策略乃為可思考方向。本研究探討推動酒精汽油策略以改善臭氧污染潛在效果;以臺南地區為研究範圍,設定使用不同比例酒精汽油之排放情境,應用空氣品質模式(CMAQ) 模擬臭氧濃度,比對解析臭氧污染差異。本研究使用Mobile6.2模式,收集臺南地區行車資料,推估各種汽油車輛使用不同油品(G95、E3、E15) 之空氣污染物排放係數,代入路網網格建立排放量空間分佈,應用CMAQ空氣品質模式,模擬不同季節(以民國96年1、4、7、10月代表)各一周時段之臭氧濃度逐時變化,以分析汽油車輛使用酒精汽油排放空氣污染物對臺南地區臭氧濃度之影響。
研究結果顯示,汽油車輛使用E3和E15將導致東臺南地區臭氧濃度增量,於臨海區域臭氧濃度降低;北臺南區域夏季臭氧濃度明顯增加5~7ppb;臺南東區域鄰接高雄市區而於秋季臭氧濃度上升。在車輛高密度都會中心區域(舊臺南市區) ,臭氧最大值及平均濃度於各季節皆呈輕徵下降(1~2%)現象。在臺南地區推動酒精汽油,多數區域(52~100%)臭氧平均濃度皆呈現改善趨勢,大部分區域(63~100%)於臭氧事件日之臭氧濃度最大值亦降低。比較不同參配比例酒精汽油(E3、E15) 之效果;使用E15對臭氧改善效果比使用E3為佳(增加約2%),秋季臭氧平均濃度則會微輻增高3~5%左右。模式模擬案例結果顯示,使用E3或E15,於各季節都可降低臺南都會中心區域於事件日期間之臭氧最大值,可減低臭氧濃度逾越空氣品質標準之頻率。
This study has been conducted to investigate the potential impact on ozone pollution by introducing the ethanol-blended gasoline in Tainan City. Mobile 6.2 was used to estimate the local traffic information and the G95, E3, E15 gasoline were used by all vehicle categories which were used to estimate the grid emission map. An air quality modeling to simulate ozone concentration for one week duration in each season on 2007 to analyze using E3 and E15 gasohol for gasoline vehicles for Tainan ozone concentration and control the direction of the impact of ozone pollution. In addition to discussing Tainan gasohol policy impact, the other will be discussed in April and October gasohol policy on the impact of high concentrations of ozone.
The results showed that alcohol gasoline strategy will increase ozone concentrations in the eastern Tainan, ozone concentration in the coastal area will reduce; ozone concentrations in the north regional would significantly increase with 5 ~ 7ppb in summer. The maximum and average concentrations of ozone in downtown area with high-density vehicle would slightly decrease (1-2%) in each season. Promoting ethanol gasohol would improve the average concentration of ozone in most regions (52 to 100%) and the maximum ozone concentration in most of the regions (63 to 100%) would also be decreased. The effect of using E15 improve the ratio of ozone increase of about 2% on E3, but will increase the average concentration of 3-5% on autumn. The study indicates that appling alcohol-gasoline in Tainan City could reduce the maximum ozone concentration in most areas and reduce the occurrence potential of ozone episode event.
1. Byun, D., Schere, K.L., Review of the governing equations, computationalalgorithms, and other components of the models-3 community multiscale airquality (CMAQ) modeling system. Applied Mechanics Reviews . (2006).
2. C. Scott Sluder and Brian H. West, NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels, ORNL/TM-2011/461, (2011)
3. Cheng, W. L. Ozone distribution in coastal Taiwan under sea-breeze conditions. Atmospheric Environment, 36 (2002)
4. Cardelino and R. E. Imhoff. The use of photochemical indicators to evaluate ozone-NOx-hydrocarbon sensitivity: Case studies from Atlanta, New York and Los Angeles. J. Air Waste Manage. Assoc., 47, 642-652, September, (1997)
5. Diana L Ginnebaugh and Mark Z Jacobson Examining the impacts of ethanol (E85) versus gasoline photochemical production of smog in a fog using near-explicit gas- and aqueous-chemistry mechanisms. Environmental Research Letters 04(2012)
6. Durbin, T.D., Miller, J.W., Younglove, T., Huai, T., Cocker, K., Effects of fuelethanol content and volatility on regulated and unregulated exhaust emissionsfor the latest technology gasoline vehicles. Environmental Science and Technology 41, (2007).
7. ENVIRON International Cooperation, User’s Guide for Comprehensive air quality model with extensions (CAMx) Version 5.10. (2009).
8. Environment Canada. Comparison of Emissions from Conventional and Flexible Fuel Vehicles Operating on Gasoline and E85 Fuels. ERM Report No. 05-039, 2007.
9. HERNANDEZ J L,SRIKISHEN J, ERICKSON D J,et al .A regional climate study of Central America using the MM5 modeling system : Results and comparison to observations.International Journal of Climatology ,(2006).
10. Kleinman, L. I., P. H. Daum, D. G. Imre, J. H. Lee, Y-N. Lee, L. J. Nunnermacker, S. R. Springston, J. Weinstein-Lloyd, and L. Newman, Ozone production in the New York City urban plume, J.Geophys. Res., 105, 14495-14511, (2000).
11. Kirchner, F., F. Jeaneret, A. Clappier, B. Kruger, H. van den Bergh, and B. Calpini, Total VOC reactivity in the planetary boundary layer 2. A new indicator for determining the sensitivity of the ozone production to VOC and NOx, J. Geophys. Res., 106, 3095-3110, (2001)
12. Lu, C. H. and J., Chang .On the indicator-based approach to assess ozone sensitivities and emission features, J. Geophys. Res, 103, 3453-3462,1998.
13. M. Correa, M. N. Arizzi, A. Betz, S. Mingote, J. D. Salamone, Locomotor stimulant effects of intraventricular injections of low doses of ethanol in rats: acute and repeated administration ,Psychopharmacology December (2003)
14. M.Z. Jacobson.Effects of ethanol (E85) versus gasoline vehicles on Cancer and Mortality in the United States,Environmental Science and Technology, 41 (2007)
15. M. Zhang, I. Uno, S. Sugata, Z. Wang, D. Byun, H. Akimoto Numerical study of boundary layer ozone transport and photochemical production in east Asia in the wintertime.Geophysical Research Letters, 29 (2002)
16. Milford, J., D. Gao, S. Sillman, P. Blossey, and A. G. Russell. Total reactive nitrogen (NOy) as an indicator for the sensitivity of ozone to NOx and hydrocarbons. J. Geophys. Res. , 99, 3533-3542, (1994)
17. Rich Cook, Sharon Phillips, Marc Houyoux, Pat Dolwick, Rich Mason, Catherine Yanca, Margaret Zawacki, Ken Davidson, Harvey Michaels Craig Harvey, Joseph Somers, Deborah Luecken , Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act, Atmospheric Environment, December (2011)
18. Shan, W., Yin, Y., Zhang, J., and Ding, Y., Observational study of surface ozone at an urban site in East China. Atmospheric Research, 89,(2008)
19. Southwest Research Institute. Flex Fuel Vehicles (FFVs) VOC/PM Cold Temperature Characterization When Operating on Ethanol (E10, E70, E85). Prepared for U.S. Environmental Protection Agency. Docket EPA-HQ-OAR-2005-0161, (2007)
20. Sluder, C. and West, B., "NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels," SAE Int. J. Fuels Lubr. 5(2):721-732, (2012)
21. Sillman, S.,The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res.,100(1995)
22. Sillman, S., and D. He, Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators, J. Geophys. Res., 107, D22, 4659, doi:10.1029/2001,(2002)
23. Sillman, S., R. Vautard, L. Menut, and D. Kley, O3-NOx-VOC sensitivity and NOx-VOC indicators in Paris: results from models and ESQUIF measurements, J. Geophys. Res., in press, (2003)
24. Sillman, S., D. He, M. Pippin, P. Daum, L. Kleinman, J. H. Lee and J. Weinstein-Lloyd. Model correlations for ozone, reactive nitrogen and peroxides for Nashville in comparison with measurements: implications for VOC-NOx sensitivity. J. Geophys. Res. 103, 22629-22644, (1998).
25. T. Ohara1, H. Akimoto, J. Kurokawa1, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka, An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmospheric Chemistry and Physics,(2007)
26. U. S. Environmental Protection Agency. Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone,PM2.5, and Regional Haze. Office of Air Quality Planning and Standards,Research Triangle Park, NC. (2007)
27. U. S. Environmental Protection Agencyb. Regulation of fuels and fuel additives: renewable fuel standard program; final rule. Federal Register 72 (83), 23900~24013, (2007)
28. U. S. Environmental Protection Agency. Draft Regulatory Impact Analysis:Changes to Renewable Fuel Standard Program. Office of Transportation and AirQuality, Ann Arbor, MI. (2009)
29. Vertin, Keith, Gerard Glinksy, and Aaron Reek, Comparative Emissions Testing of Vehicles Aged on E0, E15, and E20 Fuels, NREL/SR-5400-55778, August (2012)
30. 王建鈞,臺灣地區空氣污染物排放處理系統之建立研究-以SMOKE為基礎,碩士論文,國立雲林科技大學環境與安全衛生工程學系,雲林,2005。
31. 孔憲法,由臺南的景觀特性看水岸整治,臺南市都市型態與特性研討會論文集,1991
32. 錢哲瑋,臭氧及其前驅物量化關係與管制方向之分析研究,碩士論文。雲林科技大學環境與安全衛生工程系,2008
33. 李庭宇,雲嘉南地區高臭氧污染時空變異與污染來源分析探討,碩士論文。國立臺灣大學環境工程學系,2009
34. 張安德,以光化網格模式及光化指標長期模擬分析境外傳輸對臺灣臭氧之影響,碩士論文。雲林科技大學環境與安全衛生工程系,2011。
35. 賴信志,高屏地區臭氧汙染事件日期間之氣流特性與其對臭氧前驅物傳輸之影響。環保署專案計畫期末報告,2005。
36. 蔡德明,應用Models-3/CMAQ以PC cluster研究高速公路網與電廠對南高屏地區臭氧濃度之影響,博士論文。國立成功大學環境工程學系,2006。
37. 倪國敦,高高屏地區臭氧趨勢分析與氣象因子相關性之討論,碩士論文。國立中山大學環境工程研究所,2004。
38. 詹長權、王家麟,臺灣地區光化學污染之形成、傳輸機制及其影響,行政院環境保護署 ,2007。
39. 陳聖博,以光化學網格模式評估不同季節臭氧事件日之排放源與風場輸入資料差異,碩士論文。國立中興大學環境工程學所,2006。
40. 陳建鴻,TAQM與Models-3/CMAQ之比較及在臭氧控制方向之應用,碩士論文。國立雲林科技大學環境與安全工程所,2003。
41. 張能復,2001,〝光化軌跡模式架構與應用〞,2001 年空氣品質模式技術研討會論文集
42. 張艮輝等,1998,〝高解析度南高屏地區空氣品質模式之建立-臺灣空氣品質模式(TAQM)〞,南高屏地區空氣污染總量管制規劃,EPA-87-FA42-03-F5。
43. http://www.cepd.gov.tw/行政院經委會
44. http://web3.moeaboe.gov.tw/ECW/populace 經濟部能源局
45. http://www.nea.gov.cn/ 中國國家能源局
46. http://www.cres.org.cn/ 中國可再生能源網