| 研究生: |
林建勝 Lin, Jian-Sheng |
|---|---|
| 論文名稱: |
以生質能源程序探討廚餘厭氧氫醱酵之研究 Anaerobic Bio-energy Process Study on Fermentative Hydrogen Production with Kitchen Waste |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 生物產氫 、厭氧醱酵 、尾端修飾限制片段長度多形性 、生質能源 、廚餘 |
| 外文關鍵詞: | T-RFLP, kitchen waste, hydrogen production, anaerobic fermention, bio-energy |
| 相關次數: | 點閱:131 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
至 2006 年,台灣廚餘的回收率已可達三分之一,日回收量超過 1,500 噸。現行的廚餘回收再利用的方式以養豬(75%)及堆肥(22%)為主,但這兩種回收再利用的方式皆有衛生環境上的隱憂,例如傳染疾病以及二次污染之虞。在另一方面,由於台灣缺乏化石燃料(煤礦、石油、天然氣等)的來源,98% 以上的能源來源必需仰賴進口,更有迫切開發替代性能源之需求。基於環境與能源這兩者的共同考量,我們期望透過發展廚餘厭氧醱酵,利用此對環境較為友善的方法來達到有機廢棄物的減量,並且開發潔淨生質能源的技術平台。
廚餘是一種高濃度的有機廢棄物,其總 COD 約 82-107 g/L,VSS/SS 為 90% 以上,且具有高濃度的固體物(約 40 g/L)。本研究針對台北及高雄兩市的廚餘分別進行 7 次及 27 次的採樣與特性分析,並估算廚餘的電子分布。油脂及固態的蛋白質佔廚餘電子分布的最大宗,兩者的和超過總電子數的一半,而總碳水化合物所佔的比例則相對較小,北高兩市分別為 7.7% 及 19.3%。揮發酸的分布兩市相去不大,均約為 10% 左右,而揮發酸中,又以乳酸的濃度最高,高雄市廚餘乳酸的濃度可達 10 g/L。
本研究以一實驗室規模的 3 L 廚餘厭氧氫醱酵槽來進行其廚餘水解、酸化、產氫之程序研究,反應槽的形式定義為「間歇性進流完全攪拌反應槽」(Intermittent - Continuous Stirred Tank Reactor, I-CSTR)。廚餘基質在濃度及組成成分的變動造成其產氫速率上亦有明顯的起伏,在經過連續 300 天的長期操作,於第五試程發現有最高的平均體積產氫速率為 3.36±0.86 L H2/L-day,該試程亦操作在最高的體積荷負:100.5±24.8 g COD/L-day。最高的產氫 yield 及比產氫速率則皆發生在第四試程,分別為 96.4±37.9 mL H2/g VSSin 及 0.11±0.03 L H2/g VSS-day。
經過 277 天的廚餘氫醱酵微生物馴養,於第四試程將 I-CSTR 反應槽的出流混合液進行不同食微比的廚餘生化產氫潛能批分次試驗,由實驗的結果得知,在初始食微比為 S0/X0 = 9.5 g COD/g VSS 有最高的比產氫速率(specific hydrogen production rate)478 mL H2/g VSS-day,相較於反應槽啟動之際初始植種的污泥活性(150 mL H2/g VSS-day,初始食微比為 10.8 g COD/g VSS),有 3.19 倍的大幅增加。
以 I-CSTR 廚餘厭氧氫醱酵槽出流混合液進行 16S rRNA 基因選殖(clone library)及 DNA 定序(sequencing)實驗,在挑選的 154 個 clones 中發現 17 個 OTUs(operational taxonomic units)。62% 的菌比對最接近為 Butyrivibrio fibrisolvens(相似度為 92%),另有比對到兩株 Clostridium,分別為 Clostridium aminophilum(相似度為94%)及 Clostridum proteoclasticum(相似度為 91%),兩者均約佔 5%。在 I-CSTR 廚餘厭氧氫醱酵槽 12 次的尾端修飾限制片段長度多樣性(terminal restriction fragment length polymorphism, T-RFLP)圖譜分析中,發現反應槽內的微生物在不同操作條件下,其微生物菌相的組成有極大的變化。利用兩端引子修飾不同螢光染劑的改良式 T-RFLP,可應用於廚餘氫醱酵微生物探討並提高其對不同菌種的解析能力。
In Taiwan, almost one third of population contributed 1,500 tons per day of household kitchen waste that was reused till 2006. Kitchen waste in Taiwan was mainly reused for pig house feeding (75%) and composting (22%), but both of these two ways to treat the kitchen waste would cause some problems, such as infectious disease or secondary pollution. Anaerobic fermentation is one of the most environmentally friendly methods to treat the kitchen waste. In another hand, Taiwan was short of fossil fuel (coal, petroleum, natural gas etc.), and more than 98% of energy source was imported from other countries. Thus anaerobic fermentation might be the better method to treat the kitchen waste for both environment and energy consideration.
Kitchen waste was a kind of organic waste that contained with highly nutritive composition (total COD was about 82-107 g/L and VSS/SS was great than 90%) and with about 40 g/L high concentration of suspended solid. The electron distribution of kitchen waste was calculated by characteristic analysis for Taipei City and Kaohsiung city (n=7 and 27 respectively). Lipid and solid protein were the most dominant items of all which contained more than 50% of electron while total carbohydrate only about 7.7 to 19.8%. Electron distribution of VFAs (volatile fatty acids) was about 10% which mainly contributed by lactic acid.
A 3 L bench scale of bio-hydrogenation I-CSTR (Intermittent - Continuous Stirred Tank Reactor) was established to study kitchen waste treatment and bioenergy process with anaerobic fermentation. Large fluctuation of organic loading from kitchen waste attained to the high variation of biogas profile. Within 300 days of continuously long-term operation, the maximum average hydrogen production rate was observed in run 5 up to 3.36±0.86 L H2/L-day with the extremely high volumetric loading rate 100.5±24.8 g COD/L-day. The highest average hydrogen yield and specific hydrogen production rate was observed in run 4 with 96.4±37.9 mL H2/g VSSin and 0.11±0.03 L H2/g VSS-day, respectively.
After 277-days enrichment of microbial existed in I-CSTR, the bio-activity (specific hydrogen production rate) measured by batch test was increased 3.19 folds with 478 mL H2/g VSS-day where S0/X0 = 9.5 g COD/g VSS than previous study when inoculum (150 mL H2/g VSS-day, 10.8 g COD/g VSS).
As the result of clone library of 16S rRNA of the anaerobic microbes taken from I-CSRT bio-hydrogen reactor, there were 17 operational taxonomic units (OTUs) in 154 clones. 62% of clones could be identified as belonging to Butyrivibrio fibrisolvens (92% similarity) and both 5% of clones were Clostridium aminophilum (94% similarity) and Clostridum proteoclasticum (91% similarity). Significant population shift was observed through different runs by 12 T-RFLP analyses which total DNA extracted from mixed liquid of effluent in I-CSTR. Modified T-RFLP with both fluorescently labeled forward and reverse primers could improve the differential of bacteria existed in this reactor.
Adams MWW and Stiefel EI, Biological hydrogen production: not so elementary, Science 282:1842-1843 (1998).
Adams MWW, Mortenson LE and Chen JS, Hydrogenase, Biochimica et Biophysica Acta 594:105-176 (1980).
Allison C and MacFarlane GT, Regulation of protease production in Clostridium sporogenes, Applied and Environmental Microbiology 56:3485-3490 (1990).
Amann R, LudwigW and Schleifer KH, Phylogentic identification and in situ detection of individual microbial cells without cultivation, Microbiological Reviews 59:143–169 (1995).
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R and Stahl DA, Combination of 16S rRNA-targeted oilgonucleotide probes with flow cytometry for analyzing mixed microbial population, Applied and Environmental Microbiology 56:1919-1925 (1990).
Andreesen JR, Bahl H and Gottschalk G, Introduction to the physiology and biochemistry of genus Clostridium, In Clostridia, ed by Minton NP and Clark JD, Plenum Press, New York, pp 27-62 (1989).
APHA, Standard methods for the examination of water and wastewater, 21st ed, American Public Health Association, Washington DC (2005).
Árnason B and Sigfússon TI, Iceland – a future hydrogen economy, International Journal of Hydrogen Energy 25:389-394 (2000).
Attwood GT, Li D, Pacheco D and Tavendale M, Production of indolic compounds by rumen bacteria isolated from grazing ruminants, Journal of Applied Microbiology 100:1261-1271 (2006).
Attwood GT, Reilly K and Patel BK, Clostridium proteoclasticum sp. nov., a novel proteolytic bacterium from the bovine rumen, International Journal of Systematic Bacteriology 46:753-758 (1996).
Bahl H and Dürre P, Clostridia, In Biotechnology: A Multi-Volume Comprehensive Treatise, 2nd ed., Vol. 1, ed by Rehm HJ, Reed G, Pühler A and Stadler P, VCH Verlagsgesellschaft, Weinheim, Germany, pp 285-323 (1993).
Bai MD, Cheng SS and Tseng I.C, Biohydrogen produced due to peptone degradation by pretreated seed sludge, Porc. of 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan, pp 315-320 (2001).
Baronofsky JJ, Schreurs WJA and Kashket EV, Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum, Applied and Environmental Microbiology 48:1134-1139 (1984).
Batstone DJ, Damien J, Keller J, Angelidaki I, Kalyuzhny SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H and Vavilin VA, Anaerobic Digestion Model No. 1 (ADM1), International Water Association, London, pp 1-5 (2002).
Bockris JO’M, The origin of ideas on a Hydrogen Economy and its solution to decay of the environment, International Journal of Hydrogen Energy 27:731-740 (2002).
BOE Taiwan, Offical website of Taiwan BOE (Bureau of Energy, Ministry of Economic Affairs), http://www.moeaboe.gov.tw/ [accessed 20 May, 2007].
Brosius J, Dull TJ, Sleeter DD and Noller HF, Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli, Journal of Molecular Biology 148:107-127 (1981).
Brosseau JD and Zajic JE, Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum, Journal of Chemical Technology and Biotechnology 32:496-502 (1982).
CaH2Net, Offical website of CaH2Net (California Hydrogen Highway Network), http://www.hydrogenhighway.ca.gov/ [accessed 20 May, 2007].
Canganella F. and Wiegel J, The potential of thermophilic clostridia in biotechnology, In: The Clostridia and Biotechnology, ed by Woods DR, Butterworth-Heinemann, Stoneham, pp 393-417 (1993).
Chang FY and Lin CY, Biohydrogen production using an up-flow anaerobic sludge blanket reactor, International Journal of Hydrogen Energy 29:33-39 (2004).
Chang JS, Lee KS and Lin PJ, Biohydrogen production with fixed-bed bioreactors, International Journal of Hydrogen Energy 27:1167-1174 (2002).
Charles GH, An Introduction to Chemical Engineering Kinetics and Reactor Design, Wiley, New York, pp 389-417 (1979).
Chen CC and Lin CY, Using sucrose as a substrate in an anaerobic hydrogenproducing reactor, Advances in Environmental Research 7:695-699 (2003).
Chen JS and Mortenson LE, Purification and properties of hydrogenase from Clostridium pasteuriamun W5, Biochimica et Biophysica Acta, 371:283-298 (1974).
Cheng SS, Lin CY, Tseng IC, Lee CM, Lin HI, Lin MR, Chen ST, Chen SD and Liu PW, Biohydrogen production mechanisms and processes application on multiple substrates, Proc. of 1st NRL International Workshop on Innovative Anaerobic Technology, Daejeon, Korea, pp 33-39 (2003).
Cheng SS, Tseng IC and Bai MD, Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, Taipei, Taiwan, pp 759-764 (1999).
Cord-Ruwisch R, Seitz HJ and Conrad R, The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Archives of Microbiology 149:350-357 (1988).
Dabrock B, Bahl H and Gottschalk G, Parameters affecting solvent production by Clostridium pasteuriamun, Applied and Environmental Microbiology 58:1233-1239 (1992).
Daesch G and Mortenson LE, Sucrose Catabolism in Clostridium pasteurianum and Its Relation to N2 Fixation, Journal of Bacteriology 96:346-351 (1968).
Das D and Veziroğlu TN, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy 26:13-28 (2001).
Das D, Dutta T, Nath K, Shireen MK, DAS AK and Nejat VT, Role of Fe-hydrogenase in biological hydrogen production, Current Science 90:1627-1637 (2006).
Desvaux M, Guedon E and Petitdemange H, Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium, Applied and Environmental Microbiology 66:2461-2470 (2000).
Diez-Gonzalez F, Russell JB and Hunter JB, The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate by Clostridium acetobutylicum strain P262, Archives of Microbiology 164:36-42 (1995).
Driehuis F, Oude-Elferink SJWH and Spoelstra SF, Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability, Journal of Applied Microbiology 87:583-594 (1999).
Duangmanee T, Padmasiri S, Simmons JJ, Raskin L and Sung S, Hydrogen production by anaerobic microbial communities exposed to repeated heat treatment, WEFTEC 75th Annual Conference (2002).
Dunn S, Hydrogen futures: toward a sustainable energy system, International Journal of Hydrogen Energy 27:235-264 (2002).
EPA Taipei, Offical website of Taipei EPA (Environmental Protection Administration), http://www.epb.taipei.gov.tw/ [accessed 20 May, 2007].
EPA Taiwan, Offical website of Taiwan EPA (Environmental Protection Administration), http://www.epa.gov.tw/main/index.asp [accessed 20 May, 2007].
Fabiano B and Perego P, Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes, International Journal of Hydrogen Energy 27:149-156 (2002).
Fang HHP and Liu H, Effect of pH on hydrogen production from glucose by a mixed culture, Bioresource Technology 82:87-93 (2002).
Fang HHP, Li CL and Zhang T, Acidophilic biohydrogen production from rice slurry, International Journal of Hydrogen Energy 31:683-692, (2006).
Ferris MJ, Muyzer G and Ward DM, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community, Applied and Environmental Microbiology 62:340-346 (1996).
Forster RJ, Teather RM, Gong J and Deng SJ, 16S rRNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer, Letters in Applied Microbiology 23:218-222 (1996).
Frederick MA, Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology, 4th ed., Wiley, New York (1999).
FreedomCar, Offical website of FreedomCar project in United States Council for Automotive Research, http://www.uscar.org/guest/index.php [accessed 20 May, 2007].
Fumiaki T, Chang JD, Mizukami N, Tatsuo ST and Katsushige H, Isolation of a hydrogen-producing bacterium Clostridium beijerinckii strain AM21B, from termites, Canadian Journal of Microbiology 39:726-730 (1993).
Girbal L and Soucaille P, Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool, Journal of Bacteriology 176:6433-6438 (1994).
Gore A, An inconvenient truth: the planetary emergency of global warming and what we can do about it, Rodale Books, New York (2006).
Gottschalk G, Bacterial Metabolism, 2nd ed, Springer-Verlag, New York, pp 276-279 (1985).
Han SK and Shin HS, Performance of an innovative two-stage process converting food waste to hydrogen and methane, Journal of the Air and Waste Management Association 54:242-249 (2004).
Hanaki K, Matsuo T and Nagase M, Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process, Biotechnology and Bioengineering 23:1591-1610 (1981).
Hatamoto M, Imachi H, Ohashi A and Harada H, Identification and Cultivation of Anaerobic, Syntrophic Long-Chain Fatty Acid-Degrading Microbes from Mesophilic and Thermophilic Methanogenic Sludges, Applied and Environmental Microbiology 73:1332-1340 (2007).
Henfner RA, The age of energy gases, 10th Repsol-Harvard Seminar on Energy Policy, Madrid, Spain (1999).
Herbert D, Philipps PJ and Strange RE, Carbohydrate analysis, Methods in Enzymology 5:265-277 (1971).
Hespell RB, Wolf R and Bothast RJ, Fermentation of Xylans by Butyrivibrio fibrisolvens and Other Ruminal Bacteria, Applied and Environmental Microbiology 53:2849-2853 (1987).
Heyndrickx M, de Vos P, Ley JD, Fermentation characteristics of Clostridium pasteurianum LMG 3285 grown on glucose and mannitol, Journal of Applied Bacteriology 70:3233-3241 (1991).
Hippe H, Andreesen JR and Gottschalk G, The Genus Clostridium - Nonmedical, In The Prokaryotes, 2nd ed.,Vol.3, ed by Balows H, Truper HG, Dworkin M, Hareder W and Schleifer KH, Springer-Verlag, New York, pp 1800-1825 (1992).
Horiuchi J, Shimizu T, Kanno T and Kobayashi M, Dynamic behavior in response to pH shift during anaerobic acidogenesis with a chemstat culture, Biotechnology and Bioengineering 13:155-157 (1999).
Hussy I, Hawkes FR, Dinsdale R and Hawkes DL, Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora, Biotechnology and Bioengineering 84:619-626 (2003).
Hussy I, Hawkes FR, Dinsdale R and Hawkes DL, Continuous fermentative hydrogen production from sucrose and sugarbeet, International Journal of Hydrogen Energy 30:471-483 (2005).
Hwu CS, Tseng SK, Yuan CT, Kulik Z and Lettinga G, Biosorption of long-chain fatty acids in UASB treatment process, Water Research 32:1571-1579 (1998).
Iannotti EL, Kafkewitz D, Wolin MJ and Bryant MP, Glucose Fermentation Products of Ruminococcus albus Grown in Continuous Culture with Vibrio succinogenes: Changes Caused by Interspecies Transfer of H2, Journal of Bacteriology 114:1231-1240 (1973).
Junelles AM, Janati-Idrissi R, Petitdemange H and Gay R, Iron effect on acetone butanol fermentation, Current Microbiology 17:299-303 (1988).
Jungermann K, Thauer RK, Leimenstoll G and Decker K, Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia, Biochimica et Biophysica Acta 305:268-280 (1973).
Kalia VC, Jain SR, Kumar A and Joshi AP, Fermentationof bio-waste to H2 by Bacillus lichenoformis, World Journal of Microbiology and Biotechnology 10:224-227 (1994).
Kataoka N, Miya A and Kiriyama K, Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria, Water Science and Technology 36:41-47 (1997).
Kepler CR, Hirons KP, McNeill JJ and Tove SB, Intermediates and Products of the Biohydrogenation of Linoleic Acid by Butyrivibrio fibrisolvens, Journal of Biological Chemistry 241:1350-1354 (1966).
Kim JW, HERC 2nd Stage Research Programs, Hydrogen Energy R&D Center, Darjeon, pp 5-15 (2006).
Kim SH, Han SK and Shin HS, Two-phase anaerobic treatment system for fat-containing wastewater, Journal of Chemical Technology and Biotechnology 79:63-71 (2004).
Kistner A and Gouws L, Cellulolytic cooci occurring in the rumen of sheep condition to Lucerne hay, Journal of General Microbiology 34:447-58 (1964).
Kumar N and Das D, Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices, Enzyme and Microbial Technology 29:280–287 (2001).
Kumar N and Das D, Production and purification of alpha-amylase from hydrogen-producing Enterobacter cloacae IIT-BT 08, Bioprocess and Biosystems Engineering 23:205-208 (2000).
Lakeman JB and Browning D.J., Global Status of Hydrogen Research, ETSU F/03/00239/REP, DERA, UK (2001).
Lambert AD, Smith JP and Dodds KL, Shelf-life extension and microbiological safety of fresh meat: A review, Food Microbiology, 8:267-297 (1991).
Lay JJ, Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose, Biotechnology and Bioengineering 74:280-287 (2001).
Lay JJ, Lee YJ, and Noike T, Feasibility of biological hydrogen production from organic fraction of municipal solid waste, Water Research 11:2579-2586 (1999).
Lay JJ, Modeling and optimization of anaerobic digested sludge converting stach to hydrogen, Biotechnology and Bioengineering 68:269-278 (2000).
Lee DY, Li YY and Noike T, Influent of substrate concentration on the biohydrogen production in membrane bioreactor, Proc. of 2nd International Workshop on Innovative Anaerobic Technology, Sendai, Japan, pp 97-100 (2004‡).
Lee KS, Wu JF, Lo YS, Lo YC, Lin PJ and Chang JS, Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor, Biotechnology and Bioengineering 87:648-657 (2004+).
Lee YJ, Miyahara T and Noike T, Effect of iron concentration on hydrogen fermentation, Bioresource Technology 80: 227-231 (2001).
Li C and Fang HHP, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Critical Reviews in Environmental Science and Technology 37:1-39 (2007).
Lin CY and Chang RC, Hydrogen production during the anaerobic acidogenic conversion of glucose, Journal of Chemical Technology and Biotechnology 74:498-500 (1999).
Lin CY and Lay CH, Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora, International Journal of Hydrogen Energy 29:275-281 (2004).
Liu D, Liu D, Zeng RJ, Angelidaki I, Hydrogen and methane production from household solid waste in the two-stage fermentation process, Water Research 40:2230-2236 (2006).
Liu GZ and Shen JQ, Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria, Journal of Bioscience and Bioengineering 98:251-256 (2004).
Liu WT, Marsh TL, Cheng H and Forney LJ, Characteristion of microbial diversity by determining terminal restriction fragement length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63:4516-4522 (1997).
Lovitt RW, Shen GJ and Zeikus JG, Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum, Journal of bacteriology 170:2809-2815 (1988).
McCarty PL, Anaerobic Waste Treatment Fundamentals III, Public Works 95, New York, pp 91-94 (1964).
McInerney MJ and Bryant MP, Anaerobic Degradation of Lactate by Syntrophic Associations of Methanosarcina barkeri and Desulfovibrio Species and Effect of H2 on Acetate Degradation, Applied and Environmental Microbiology 41:346-354 (1981).
McInerney MJ, Anaerobic hydrolysis and fermentation of fats and proteins, In Biology of anaerobic microorganisms, ed by Zehnder AJB, Wiley, New York pp 373-415 (1988).
Miller DN, Bryant JE, Madsen EL and Ghiorse WC, Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples, Applied and Environmental Microbiology 65:4715-5724 (1999).
Miller TL and Wolin MJ, Formation of Hydrogen and Formate by Ruminococcus albus, Journal of Bacteriology 116:836-846 (1973).
Mitsugi C, Harumi A and Kenzo F, WE-NET Japanese hydrogen program, International Journal of Hydrogen Energy 23:159-165 (1998).
Miyake J, The science of biohydrogen: an energetic view, In Biohydrogen, ed by Zaborsky OR et al., Plenum Press, New York, pp 7-18 (1998).
Nandi R and Sengupta S, Microbial production of hydrogen: An overview, Critical Reviews in Microbiology 24:61-84 (1998).
Nochur SV, Demain AL and Roberts MF. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth, Enzyme and Microbial Technology 14:338-349 (1992).
Noike T, Ko IB, Lee DY and Yokoyama S, Continuous hydrogen production from organic municipal wastes, Proc. of 1st NRL International Workshop on Innovative Anaerobic Technology, Daejeon, Korea, pp 53-60 (2003).
Noike T, Takabatake H, Mizuno O and Ohba M, Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria, International Journal of Hydrogen Energy 27:1367-1371 (2002).
Oh SE, Lyer P, Bruns MA and Logan BE, Biological hydrogen production using a membrane bioreactor, Biotechnology and Bioengineering 87:119-127 (2004‡).
Oh YK, Kim SH, Kim MS and Park S, Thermophilic biohydrogen production from glucose with trickling biofilter, Biotechnology and Bioengineering 88:690-698 (2004+).
Onodera H, Miyahara T and Nokie T, Influent of ammonia concentration on hydrogen transformation of sucrose, Proc. of 7th IWQA Asia-Pacific Regional Conference, pp 1139-1144 (1999).
Oude-Elferink SJWH, Krooneman J, Gottschal JC, Spoelstra SF, Faber F and Driehuis F, Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri, Applied and Environmental Microbiology 67:125-132 (2001).
Owen WF, Stuckey DC, Herly JRJB, Young LY and McCarty PL, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research 13:485-492 (1979).
Ozutsumi Y, Tajima K, Takenaka A and Itabashi H, The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries, Bioscience, Biotechnology, and Biochemistry 69:499-506 (2005).
Paster BJ, Russell JB, Yang CM, Chow JM, Woese CR and Tanner R, Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov, International Journal of Systematic Bacteriology 43:107-110 (1993).
Pavlostathis SG and Giraldo-Gomez E, Kinetics of anaerobic treatment, Water Science and Technology 24:35-59 (1991).
Peters JW, Lanzilotta WN, Lemon BJ and Seefeldt LC, X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution, Science 282:1853-1858 (1998).
Peters JW, Structure and mechanism of iron-only hydrogenase, Current Opinion in Structural Biology 9:670-676 (1999).
Rachman MA, Nakashimada Y, Kakizono T and Nishio N, Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor, Applied Microbiology and Biotechnology 49:450-454 (1998).
Reith JH, Wijffels RH and Barten H, Bio-Methane and Bio-Hydrogen, Dutch Biological Hydrogen Foundation, Hague, pp 9-32 (2003).
Ren N, Wang B and Ma F, Hydrogen bio-production of carbohydrate fermentation by anaerobic sludge process, Proc.of 68th Annual Water environmental Federal Conference, Miami (1995).
Rittmann BE and McCarty PL, Environmental Biotechnology: Principle and Applications, International Edition 2001, McGraw-Hill, New York, pp 126-161+, 569-627‡ (2001).
Russell JB and Rychlik JL, Factors That Alter Rumen Microbial Ecology, Science 292:1119-1122 (2001).
Salerno MB, Park W, Zuo Y and Logan BE, Inhibition of biohydrogen production by ammonia, Water Research 40:1167-1172 (2006)
Schwartz RD and Keller FA, Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH, Applied and Environmental Microbiology 43:1385-1392 (1982).
Stouthamer AH, A theoretical study on the amount of ATP required for synthesis of microbial cell material, Antonie Van Leeuwenhoek 39:545-65 (1973).
Taguchi F, Mizukami N, Saito-Takio T and Hasrgawa K, Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2, Canadian Journal of Microbiology 41:536-540 (1995).
Tajima K, Arai S, Ogata K, Nagamine T, Matsui H, Namakura M, Aminov RI and Benno Y, Rumen Bacterial Community Transition During Adaptation to High-grain Diet, Anaerobe 6:273-284 (2000).
Tanisho S, Kuromoto M and Kadokura N, Effect of CO2 removal on hydrogen production by fermentation, International Journal of Hydrogen Energy 23:559-563 (1998).
Tanisho S, Wakao N and Kosako Y, Biological hydrogen production by Enterobacter aerogenes, International Journal of Hydrogen Energy 16:29-530 (1983).
Terracciano JS, Schreurs WJA and Kashket ER, Membrance H+ conductance of Clostridium thermoaceticum and Clostridium thermoaceticum, Applied and Environmental Microbiology 53:782-786 (1987).
Thauer RK, Jungermann K and Decker K, Energy Conservation in Chemotrophic Anaerobic Bacteria, Bacteriological Review 41:100-180 (1977).
Turner JA, Sustainable Hydrogen Production, Science 305:972-974 (2004).
Ueno Y, Haruta S, Ishii M and Igarashi Y, Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost, Applied Microbiology and Biotechnology 57:555-562 (2001).
Valdez-Vazquez I, Rios-Leal E, Esparza-Garcia F, Cecchi F and Poggi-Varaldo HM, Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime, International Journal of Hydrogen Energy 30:1383-1391 (2005).
Vavilin VA, Vasiliev VB, Ponomarev AV and Rytow SV, Simulation model methane as a tool for effective biogas production during anaerobic conversion of complex organic matter, Bioresource Technology 48:1-8 (1994).
Wade LG, Organic Chemistry, Prentice-Hall, New Jersey, pp 1164-1168 (1999).
Wang G and Wang DIC, Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum, Applied and Environmental Microbiology 47:294-298 (1984).
Yokoi H, Mori S, Hirose J, Hayashi S and Takasaki Y, H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19, Biotechnology Letters 20:895-899 (1998).
Yokoi H, Ohkawa T, Hirosse J, Hayashi S and Takasaki Y, Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39, Journal of Fermentation and Bioengineering 80:571-574 (1995).
Yu HQ, Zhu ZH, Hu WR and Zhang HS, Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures, International Journal of Hydrogen Energy 27:1359-1365 (2002).
Zhang T, Liu H, and Fang HHP, Biohydrogen production from starch in wastewater under thermophilic condition, Journal of Environmental Management 69:149-156 (2003).
Zwietering MH, Jongenburger I, Rombouts FM and Van’t Riet K, Modeling of bacteria growth curve, Applied and Environmental Microbiology 56:1875-1881 (1990).
王永福、鄭幸雄、曾怡禎、白明德、蕭嘉瑢,應用分子生物學方法研究分解複合基質之中溫產氫菌族群,第二十七屆廢水處理研討會論文集(2002)。
李學霖,單醣與聚醣類混合蛋白腖基質於厭氧產氫程序分解機制之比較研究,成功大學環境工程學系碩士論文(2005)。
施翠盈,本土性梭菌屬產氫菌株之分離與生理特性研究,國立成功大學生物學研究所碩士論文(2002)。
郁揆民,紫色不含硫光合作用細菌產氫限制因子之研究,國立中興大學環境工程學研究所碩士論文(2003)。
張仕旻,利用薄膜反應器於高溫厭氧產氫生物程序之研究,成功大學環境工程學系碩士論文(2001)。
郭世強,廚餘厭氧醱酵產氫程序之功能評估,成功大學環境工程學系碩士論文(2006)。
陳文卿,台北市家戶廚餘厭氧醱酵示範系統建立及廚餘堆肥成品分析計畫期末報告,台北市環保局,台北(2005)。
黃仁唏,廚餘回收再利用(二),行政院環保署中部辦公室,台中(2001)。
黃俊霖、陳晉照、林秋裕、劉文佐,以分子生物技術進行厭氧生物產氫菌群結構之研究,第25屆廢水處理研討會論文集(2000)。
趙禹杰,澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估,成功大學環境工程學系碩士論文(2004)。
蕭景廷、李季眉、董昀昌。不同產氫光合作用細菌之最佳產氫條件研究,第25屆廢水處理研討會論文集(2000)。
蕭嘉瑢,複合基質厭氧氫發酵生物程序操控之功能評估及分生檢測生態之研究,成功大學環境工程學系碩士論文(2004)。
簡青紅,利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構,國立成功大學生物學研究所碩士論文(2003)。