| 研究生: |
陳思宏 Chen, Shih-Hong |
|---|---|
| 論文名稱: |
具有抵抗製程電壓溫度變異之電流式數位至類比轉換器與跳躍式視窗的分段逐漸趨近式類比至數位轉換器之設計 Design of Sub-Ranging SAR ADC with PVT-Stabilized Current DAC and Bypass Window |
| 指導教授: |
鄭光偉
Cheng, Kuang-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 逐漸趨近式 、跳躍式視窗 、時間數位轉換器 、抗製程電壓溫度變異 、電流式數位類比轉換器 、數位類比轉換器 |
| 外文關鍵詞: | successive approximation, skipping window, TDC, PVT-stabilization, current DAC, analog-to-digital converter |
| 相關次數: | 點閱:130 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了三個應用於高解析度及高能量轉換效率的逐漸趨近式類比至數位轉換器的電路技術。首先,分別實現利用時間特性及利用電壓特性兩種方式建立跳躍式視窗來節省電容陣列切換的機制,並改善線性度。第二,低漏電的架構調整及設計可以提高準確度。第三,在最後的兩個位元轉換步驟,以一個具有抵抗製程電壓溫度變異的電流式數位至類比轉換器來取代原本使用的電容陣列組成的數位至類比轉換器,以減少整體電容數目。除此之外,低雜訊的比較器及低抖動時間取樣的設計也呈現在本論文中。
本論文呈現兩個實做晶片。第一個設計採用時間特性的跳躍式視窗及搭配滴漏電架構。使用台積電65奈米製程,其核心電路的面積為0.169 mm^2。此電路在0.6伏特的電壓供應下操作在10萬赫茲的取樣頻率(100-kS/s)。實測效能顯示,在奈奎斯特輸入頻率下,其有效位元為10.29 位元 (SNDR為63.71 dB),得到的轉換效率分別為11.18 fJ/conv.-step與169.24 dB。
第二個設計採用電壓特性的跳躍式視窗及搭配具有抵抗製程電壓溫度變異的電流式數位至類比轉換器。使用台積電90奈米製程。其核心電路的面積為0.173 mm^2。此電路在0.8伏特的電壓供應下操作在100萬赫茲的取樣頻率(1-MS/s)。實測效能顯示,在奈奎斯特輸入頻率下,其有效位元為10.35 位元 (SNDR為64.04 dB),得到的轉換效率分別12.51 fJ/conv.-step與168.9 dB。
This dissertation proposes three techniques for high resolution SAR ADC with high power efficiency. First, both time domain and voltage domain skipping window are realized to save the power consumption of capacitive DAC and to improve the linearity. Second, low leakage design adjustment is taken into consideration to increase the accuracy. Third, a PVT-stabilized current DAC is implemented to replace the two LSB capacitors to reduce the numbers of total capacitors. In addition, low noise design for the comparator and low clock jitter edge for the sampling are also presented.
There are two implemented proof-of-concept prototypes. The first one adopts a time domain skipping window and low leakage design adjustment. It is fabricated in TSMC 65-nm CMOS process with the core area of 0.169 mm^2. It operates at 100-kS/s with 0.6 V supply voltage. The measurement results show that the prototype ADC achieves 63.71 dB SNDR with a Nyquist rate input. The resultant FoMW and FoMS of the prototype are 11.18 fJ/conv.-step and 169.24 dB, respectively.
The second one adopts a voltage domain skipping window and a PVT-stabilized current DAC. It is fabricated in TSMC 90-nm CMOS process with core area of 0.173 mm^2. The measurement results show that the prototype ADC achieves 66.04 dB SNDR with a Nyquist rate input. The resultant FoMW and FoMS of the prototype are 12.51 fJ/conv.-step and 168.9 dB, respectively.
[1] F. Ohnhäuser, Analog-Digital Converters for Industrial Applications Including an Introduction to Digital-Analog Converters. Springer, 2015.
[2] T. Morie et al., “A 71dB-SNDR 50MS/s 4.2mW CMOS SAR ADC by SNR enhancement techniques utilizing noise,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, pp. 272–273.
[3] J. A. Fredenburg and M. P. Flynn, “A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2898–2904, Dec. 2012.
[4] Y. Shu, L. Kuo, and T. Lo, “An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2928–2940, Dec. 2016.
[5] C. Liu, M. Huang, and Y. Tu, “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2941–2950, Dec. 2016.
[6] C. C. Lee and M. P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859–869, Apr. 2011.
[7] “The Data Conversion Handbook, 2005 | Education | Analog Devices.” [Online]. Available: https://www.analog.com/en/education/education-library/data-conversion-handbook.html. [Accessed: 25-Oct-2018].
[8] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999.
[9] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters. John Wiley & Sons, 2017.
[10] A. M. A. Ali et al., “A 16-bit 250-MS/s IF Sampling Pipelined ADC With Background Calibration,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2602–2612, Dec. 2010.
[11] C. Liu, S. Chang, G. Huang, and Y. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[12] V. Hariprasath, J. Guerber, S.- Lee, and U.- Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, pp. 620–621, Apr. 2010.
[13] Y. Zhu et al., “A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
[14] G. Huang, S. Chang, C. Liu, and Y. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 21, no. 3, pp. 584–588, Mar. 2013.
[15] C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, and C. M. Huang, “A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18 #x00B5;m CMOS,” in 2010 Symposium on VLSI Circuits, 2010, pp. 241–242.
[16] B. P. Ginsburg and A. P. Chandrakasan, “An energy-efficient charge recycling approach for a SAR converter with capacitive DAC,” in 2005 IEEE International Symposium on Circuits and Systems, 2005, pp. 184-187 Vol. 1.
[17] P. Harpe, E. Cantatore, and A. v Roermund, “A 2.2/2.7fJ/conversion-step 10/12b 40kS/s SAR ADC with Data-Driven Noise Reduction,” in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2013, pp. 270–271.
[18] T. Miki et al., “A 4.2 mW 50 MS/s 13 bit CMOS SAR ADC With SNR and SFDR Enhancement Techniques,” IEEE J. Solid-State Circuits, vol. 50, no. 6, pp. 1372–1381, Jun. 2015.
[19] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul. 2004.
[20] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta, “A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup+Hold Time,” in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 314–605.
[21] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta, “A 10-bit Charge-Redistribution ADC Consuming 1.9 $mu$W at 1 MS/s,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1007–1015, May 2010.
[22] A. Agnes, E. Bonizzoni, P. Malcovati, and F. Maloberti, “A 9.4-ENOB 1V 3.8μW 100kS/s SAR ADC with Time-Domain Comparator,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008, pp. 246–610.
[23] S. Lee, S. Park, H. Park, and J. Sim, “A 21 fJ/Conversion-Step 100 kS/s 10-bit ADC With a Low-Noise Time-Domain Comparator for Low-Power Sensor Interface,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 651–659, Mar. 2011.
[24] V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. V. der Plas, and J. Craninckx, “An 820μW 9b 40MS/s Noise-Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, 2008, pp. 238–610.
[25] M. Ahmadi and W. Namgoong, “A 3.3fJ/conversion-step 250kS/s 10b SAR ADC using optimized vote allocation,” in Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, 2013, pp. 1–4.
[26] P. Harpe, E. Cantatore, and A. van Roermund, “11.1 An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 194–195.
[27] P. Harpe, Y. Zhang, G. Dolmans, K. Philips, and H. D. Groot, “A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,” in 2012 IEEE International Solid-State Circuits Conference, 2012, pp. 472–474.
[28] M. Liu, P. Harpe, R. van Dommele, and A. van Roermund, “15.4 A 0.8V 10b 80kS/s SAR ADC with duty-cycled reference generation,” in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1–3.
[29] P. Harpe, A. Baschirotto, and K. A. A. Makinwa, Eds., High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing: Advances in Analog Circuit Design 2014. Springer International Publishing, 2015.
[30] D. Chang, W. Kim, M. Seo, H. Hong, and S. Ryu, “Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 64, no. 2, pp. 322–332, Feb. 2017.
[31] R. Xu, B. Liu, and J. Yuan, “Digitally Calibrated 768-kS/s 10-b Minimum-Size SAR ADC Array With Dithering,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2129–2140, Sep. 2012.
[32] W. Liu, P. Huang, and Y. Chiu, “A 12b 22.5/45MS/s 3.0mW 0.059mm lt;sup gt;2 lt;/sup gt; CMOS SAR ADC achieving over 90dB SFDR,” in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 2010, pp. 380–381.
[33] X. Huang et al., “Testing and Calibration of SAR ADCs by MCT-Based Bit Weight Extraction,” in 2012 IEEE 18th International Mixed-Signal, Sensors, and Systems Test Workshop, 2012, pp. 1–4.
[34] J. A. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David, and C. Brenneman, “All-Digital Background Calibration of a Successive Approximation ADC Using the ‘Split ADC’ Architecture,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 58, no. 10, pp. 2355–2365, Oct. 2011.
[35] Y. Zhou, B. Xu, and Y. Chiu, “A 12 bit 160 MS/s Two-Step SAR ADC With Background Bit-Weight Calibration Using a Time-Domain Proximity Detector,” IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 920–931, Apr. 2015.
[36] F. van der Goes et al., “A 1.5 mW 68 dB SNDR 80 Ms/s 2$ imes$Interleaved Pipelined SAR ADC in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2835–2845, Dec. 2014.
[37] B. Hershberg, S. Weaver, K. Sobue, S. Takeuchi, K. Hamashita, and U. Moon, “Ring Amplifiers for Switched Capacitor Circuits,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2928–2942, Dec. 2012.
[38] B. Hershberg and U. Moon, “A 75.9dB-SNDR 2.96mW 29fJ/conv-step ringamp-only pipelined ADC,” in 2013 Symposium on VLSI Circuits, 2013, pp. C94–C95.
[39] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2901–2911, Dec. 2015.
[40] H. Huang, H. Xu, B. Elies, and Y. Chiu, “A Non-Interleaved 12-b 330-MS/s Pipelined-SAR ADC With PVT-Stabilized Dynamic Amplifier Achieving Sub-1-dB SNDR Variation,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3235–3247, Dec. 2017.
[41] H. Tai, Y. Hu, H. Chen, and H. Chen, “11.2 A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 196–197.
[42] Y. Chen, K. Chang, and C. Hsieh, “A 2.02–5.16 fJ/Conversion Step 10 Bit Hybrid Coarse-Fine SAR ADC With Time-Domain Quantizer in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 357–364, Feb. 2016.
[43] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, and K. Sushihara, “A 97.99 dB SNDR, 2 kHz BW, 37.1 µW noise-shaping SAR ADC with dynamic element matching and modulation dither effect,” in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1–2.
[44] C. Liu and M. Huang, “28.1 A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 466–467.
[45] Z. Chen, M. Miyahara, and A. Matsuzawa, “A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC,” in 2015 Symposium on VLSI Circuits (VLSI Circuits), 2015, pp. C64–C65.
[46] S. W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-$muhboxm$ CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[47] C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 2010, pp. 386–387.
[48] S. H. Lewis and P. R. Gray, “A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 954–961, Dec. 1987.
[49] R. Sekimoto, A. Shikata, K. Yoshioka, T. Kuroda, and H. Ishikuro, “A 0.5-V 5.2-fJ/Conversion-Step Full Asynchronous SAR ADC With Leakage Power Reduction Down to 650 pW by Boosted Self-Power Gating in 40-nm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2628–2636, Nov. 2013.
[50] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proc. IEEE, vol. 91, no. 2, pp. 305–327, Feb. 2003.
[51] C. Hu, Modern Semiconductor Devices for Integrated Circuits. Prentice Hall, 2010.
[52] A.- Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, “Analog circuits in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 132–143, Jan. 2005.
[53] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May 1999.
[54] M. Kim, U. Ha, K. J. Lee, Y. Lee, and H. Yoo, “A 82-nW Chaotic Map True Random Number Generator Based on a Sub-Ranging SAR ADC,” IEEE J. Solid-State Circuits, vol. 52, no. 7, pp. 1953–1965, Jul. 2017.
[55] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s Pipelined ADC With Mixed-Mode Front-End S/H Circuit,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 55, no. 6, pp. 1430–1440, Jul. 2008.
[56] T. Rabuske and J. Fernandes, Charge-Sharing SAR ADCs for Low-Voltage Low-Power Applications. Springer International Publishing, 2017.
[57] J. Kim, B. S. Leibowitz, J. Ren, and C. J. Madden, “Simulation and Analysis of Random Decision Errors in Clocked Comparators,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 56, no. 8, pp. 1844–1857, Aug. 2009.
[58] J. Kim, B. S. Leibowitz, and M. Jeeradit, “Impulse sensitivity function analysis of periodic circuits,” in 2008 IEEE/ACM International Conference on Computer-Aided Design, 2008, pp. 386–391.
[59] T. C. Carusone, D. Johns, K. W. Martin, and D. Johns, Analog integrated circuit design, 2nd ed. Singapore: Wiley, 2013.
[60] A. Shikata, R. Sekimoto, T. Kuroda, and H. Ishikuro, “A 0.5 V 1.1 MS/sec 6.3 fJ/Conversion-Step SAR-ADC With Tri-Level Comparator in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 4, pp. 1022–1030, Apr. 2012.
[61] Y. Chen et al., “Split capacitor DAC mismatch calibration in successive approximation ADC,” in 2009 IEEE Custom Integrated Circuits Conference, 2009, pp. 279–282.
[62] J. Um, Y. Kim, E. Song, J. Sim, and H. Park, “A Digital-Domain Calibration of Split-Capacitor DAC for a Differential SAR ADC Without Additional Analog Circuits,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 60, no. 11, pp. 2845–2856, Nov. 2013.
[63] J. Guerber, H. Venkatram, M. Gande, A. Waters, and U.-K. Moon, “A 10-b Ternary SAR ADC With Quantization Time Information Utilization,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2604–2613, Nov. 2012.
[64] G. Huang, S. Chang, C. Liu, and Y. Lin, “A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2783–2795, Nov. 2012.
[65] M. Yip and A. P. Chandrakasan, “A resolution-reconfigurable 5-to-10b 0.4-to-1V power scalable SAR ADC,” in 2011 IEEE International Solid-State Circuits Conference, 2011, pp. 190–192.
[66] C. C. Lee and M. P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 859–869, Apr. 2011.
[67] W. Tseng, W. Lee, C. Huang, and P. Chiu, “A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for Digitally-Assisted Wireless Transmitters,” IEEE J. Solid-State Circuits, vol. 51, no. 10, pp. 2222–2231, Oct. 2016.
[68] M. El-Chammas et al., “15.8 90dB-SFDR 14b 500MS/S BiCMOS switched-current pipelined ADC,” in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1–3.
[69] S. Bhagavatula and B. Jung, “A Low Power Real-time On-Chip Power Sensor in 45-nm SOI,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 59, no. 7, pp. 1577–1587, Jul. 2012.
[70] K. Lin, X. Wang, X. Zhang, B. Wang, and T. Ouyang, “A PVT-independent Schmitt trigger with fully adjustable hysteresis threshold voltages for low-power 1-bit digitization applications,” IEICE Electron. Express, vol. 13, no. 17, pp. 20160650–20160650, 2016.
[71] B. Razavi, “The Current-Steering DAC [A Circuit for All Seasons],” IEEE Solid-State Circuits Mag., vol. 10, no. 1, pp. 11–15, winter 2018.
[72] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, Singapore, 2013, pp. 289–292.
[73] W. Kim et al., “A 0.6 V 12 b 10 MS/s Low-Noise Asynchronous SAR-Assisted Time-Interleaved SAR (SATI-SAR) ADC,” IEEE J. Solid-State Circuits, vol. 51, no. 8, pp. 1826–1839, Aug. 2016.
[74] K. Yoshioka et al., “28.7 A 0.7V 12b 160MS/s 12.8fJ/conv-step pipelined-SAR ADC in 28nm CMOS with digital amplifier technique,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 478–479.
[75] R. J. V. D. Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976.