| 研究生: |
蔡承昀 Tsai, Cheng-Yun |
|---|---|
| 論文名稱: |
利用軌域作用解釋超共軛效應改進放光材料與藥物分子之機制---回顧研究 Orbital-Based Explanation of Hyperconjugation Effects Employed for Refining Luminescent and Medical Compounds --- A Review Study |
| 指導教授: |
黃福永
HUANG, FU-YONG |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 超共軛效應 、負超共軛效應 、軌域作用 、NBO方法 |
| 外文關鍵詞: | hyperconjugation, negative hyperconjugation, orbital interactions, NBO method |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究依序回顧超共軛與負超共軛效應,這能使我們理解如何由實驗結果結合理論計算數據導出關於鍵結理論的兩個觀點。接著我們回顧軌域作用方法,其中在母體π-type軌域中由甲基所產生的超共軛效應,是由兩個效應互相競爭的結果 : 位於低能量的σCH所產生的不穩定效應及高能量σ*CH所產生的穩定效應。另一方面,在母體π-type軌域中由三氟甲基、羥基、胺基等具有孤對電子取代基所產生的超共軛效應,同樣也包含兩個互相競爭的效應 : 低能量的lp(F)所產生的不穩定效應及高能量σ*CF所產生的穩定效應。我們經由密度泛函理論計算結合自然鍵結軌域方法,得到的超共軛和負超共軛效應對軌域能量的影響,並提出的軌域作用方法。超共軛與負超共軛效應皆與母體取代位置的貢獻度有關,例如當我們引入取代基到母體中具有高碳貢獻度的位置時,取代基所產生的π效應越明顯。這些推論能有效並完整的解釋關於過去文獻中許多金屬銥(III)、鋁(III)放光材料的取代基修飾結果。最後我們總結軌域作用方法的優點,同時也能用來解釋(1)甲苯、苯酚、苯胺等苯類衍生物在UV吸收光譜中的紅移現象、(2)具有高親電性的乙烯衍生物能降低Diels Alder反應的活化能、(3)調整兩系列化合物的藥物活性 : 二苯二硫醚衍生物能抑制HIV病毒的活性及雙胍類衍生物能治療糖尿病患者。在未來展望方面,過去實驗室曾合成出一系列的新型紫外線吸收劑Tinuvin P衍生物,我們希望藉由本文的推論來分析Tinuvin P分子HOMO/LUMO軌域中碳貢獻度的大小,配合適當的取代基修飾,可以調整紫外光的吸收範圍,使其更符合商業需求。
本回顧研究整理出八項重點可以向科學界報導,節錄於英文摘要的CONCLUSION,其中包括(1)設計藍色放光材料;(2)三氟甲基是唯一只利用誘導效應來調整分子軌域的取代基;(3)多取代的金屬放光材料研究結果顯示取代基作用具有加乘性;(4) 本篇回顧研究結果可解釋幾乎所有文獻中的取代結果(如Gratzel,Nazeeruddin, De cola等科學家的研究結果);(5) 解釋鹵化乙烯的光電子譜;(6)支持NBO方法處理過度金屬所使用的12電子定律(s2d10 hybrid);(7) 氫鍵穩定離子液體中的陽離子 (正如氫鍵穩定DIBPH分子的LUMO軌域);(8) 對理論化學家而言,NBO方法又多了一項優點,能夠用來解釋取代基的π效應。
The review on going from hyperconjugation (HC) to negative hyperconjugation (NHC) has first been made sequentially, which provides an understanding how experimental observations lead to the birth of new concepts concerning bonding theories. Subsequent reviews made on the road leading to the arrival of the orbital interaction approach, which rationalizes the HC effect due to substitution of a methyl group (CH3) on energy gap between π-type highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the parent molecule. The NHC effect of substitution with a trifluoromethyl (CF3) group on HOMO-LUMO energy gap can also be understood. Furthermore, both HC and NHC effects are content-dependent, i.e. the π-effect gets higher as either substituent is introduced at a substitution site contributing more to the parent’s MO. Finally, reviews on the validity of the orbital interaction approach have then been made: this approach can well explain variations of UV-vis spectroscopy due to methylation, as well as variations of electrophilicity of substituted ethylenes, employed in studying mechanisms of Diels alder reactions. Through knowing the orbital interaction approach derived by quantum mechanical studies, synthetic studies aiming at obtaining refined UV absorbing molecules or dye molecules used in dye-sensitized solar cells can be performed successfully in a less expensive and labor-saving way.
1. Kwon, T.-H., Cho, H.S., Kim, M.K., Kim, J.-W., Kim, J.-J., Lee, K.H., Park, S.J., Shin, I.-S., Kim, H., Shin, D.M., Chung, Y.K., and Hong, J.-I., Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations. Organometallics, 2005. 24(7): p. 1578-1585.
2. Xiao, L., Chen, Z., Qu, B., Luo, J., Kong, S., Gong, Q., and Kido, J., Recent progresses on materials for electrophosphorescent organic light‐emitting devices. Advanced Materials, 2011. 23(8): p. 926-952.
3. He, L., Duan, L., Qiao, J., Wang, R., Wei, P., Wang, L., and Qiu, Y., Blue‐emitting cationic iridium complexes with 2‐(1H‐Pyrazol‐1‐yl) pyridine as the ancillary ligand for efficient light‐emitting electrochemical cells. Advanced Functional Materials, 2008. 18(14): p. 2123-2131.
4. Grushin, V.V., Herron, N., LeCloux, D.D., Marshall, W.J., Petrov, V.A., and Wang, Y., New, efficient electroluminescent materials based on organometallic Ir complexesElectronic supplementary information (ESI) available: details of the crystallographic studies, electrochemical measurements and device configuration. See http://www. rsc. org/suppdata/cc/b1/b103490c/Contribution No. 8150. Chemical Communications, 2001(16): p. 1494-1495.
5. Montes, V.A., Pohl, R., Shinar, J., and Anzenbacher, P., Effective Manipulation of the Electronic Effects and Its Influence on the Emission of 5‐Substituted Tris(8‐quinolinolate) Aluminum(III) Complexes. Chemistry – A European Journal, 2006. 12(17): p. 4523-4535.
6. Shi, Y.-W., Shi, M.-M., Huang, J.-C., Chen, H.-Z., Wang, M., Liu, X.-D., Ma, Y.-G., Xu, H., and Yang, B., Fluorinated Alq3 derivatives with tunable optical properties. Chemical Communications, 2006(18): p. 1941-1943.
7. Shi, M.-M., Lin, J.-J., Shi, Y.-W., Ouyang, M., Wang, M., and Chen, H.-Z., Achieving blue luminescence of Alq3 through the pull-push effect of the electron-withdrawing and electron-donating substituents. Materials Chemistry and Physics, 2009. 115(2): p. 841-845.
8. Chen, W.-T., Chen, Y.-J., Wu, C.-S., Lin, J.-J., Su, W.-L., Chen, S.-H., and Wang, S.-P., Two new blue-phosphorescent Ir (III) cyclometalated complexes demonstrating the pushing-up effects of amino on levels of Pi-type molecular orbitals. Inorganica Chimica Acta, 2013. 408: p. 225-229.
9. Ragni, R., Plummer, E.A., Brunner, K., Hofstraat, J.W., Babudri, F., Farinola, G.M., Naso, F., and De Cola, L., Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices. Journal of Materials Chemistry, 2006. 16(12): p. 1161-1170.
10. Avilov, I., Minoofar, P., Cornil, J., and De Cola, L., Influence of substituents on the energy and nature of the lowest excited states of heteroleptic phosphorescent Ir (III) complexes: A joint theoretical and experimental study. Journal of the American Chemical Society, 2007. 129(26): p. 8247-8258.
11. 游旨儼, 利用天然鍵結軌域分析甲基超共軛效應的一種新看法. 成功大學化學系學位論文, 2014: p. 1-136.
12. Chen, W.-T., 生物藥理行為與化學取代基效應之理論研究. 成功大學化學系學位論文, 2013: p. 1-107.
13. 吳婉寧, 以理論計算研究胍類衍生物的超共軛效應. 成功大學化學系學位論文, 2016: p. 1-157.
14. Coppo, P., Plummer, E.A., and De Cola, L., Tuning iridium (III) phenylpyridine complexes in the “almost blue” region. Chemical Communications, 2004(15): p. 1774-1775.
15. Nazeeruddin, M.K., Wegh, R., Zhou, Z., Klein, C., Wang, Q., De Angelis, F., Fantacci, S., and Grätzel, M., Efficient green-blue-light-emitting cationic iridium complex for light-emitting electrochemical cells. Inorganic chemistry, 2006. 45(23): p. 9245-9250.
16. De Angelis, F., Fantacci, S., Evans, N., Klein, C., Zakeeruddin, S.M., Moser, J.-E., Kalyanasundaram, K., Bolink, H.J., Grätzel, M., and Nazeeruddin, M.K., Controlling phosphorescence color and quantum yields in cationic iridium complexes: a combined experimental and theoretical study. Inorganic chemistry, 2007. 46(15): p. 5989-6001.
17. Di Censo, D., Fantacci, S., De Angelis, F., Klein, C., Evans, N., Kalyanasundaram, K., Bolink, H.J., Grätzel, M., and Nazeeruddin, M.K., Synthesis, characterization, and DFT/TD-DFT calculations of highly phosphorescent blue light-emitting anionic iridium complexes. Inorganic chemistry, 2008. 47(3): p. 980-989.
18. Zhou, G., Wong, W.Y., and Yang, X., New Design Tactics in OLEDs Using Functionalized 2‐Phenylpyridine‐Type Cyclometalates of Iridium (III) and Platinum (II). Chemistry–An Asian Journal, 2011. 6(7): p. 1706-1727.
19. Landis, C.R. and Weinhold, F., Valence and extra‐valence orbitals in main group and transition metal bonding. Journal of computational chemistry, 2007. 28(1): p. 198-203.
20. Chang, H.-C., Jiang, J.-C., Tsai, W.-C., Chen, G.-C., and Lin, S.H., Hydrogen Bond Stabilization in 1, 3-Dimethylimidazolium Methyl Sulfate and 1-Butyl-3-Methylimidazolium Hexafluorophosphate Probed by High Pressure: The Role of Charge-Enhanced C− H⊙⊙⊙ O Interactions in the Room-Temperature Ionic Liquid. The Journal of Physical Chemistry B, 2006. 110(7): p. 3302-3307.
21. Su, W.-L., 基於軌域的解釋放光材料微調: 取代基的本質與其取代位置效應之特色. 成功大學化學系學位論文, 2012: p. 1-96.
22. Radom, L., Schleyer, P.v.R., Pople, J., and Hehre, W., Ab Initio Molecular Orbital Theory. 1986, Wiley: New York.
23. Levine, I.N., Busch, D.H., and Shull, H., Quantum chemistry. Vol. 5. 2000: Prentice Hall Upper Saddle River, NJ.
24. Foster, J. and Weinhold, F., Natural hybrid orbitals. Journal of the American Chemical Society, 1980. 102(24): p. 7211-7218.
25. Reed, A.E. and Weinhold, F., Natural bond orbital analysis of near‐Hartree–Fock water dimer. The Journal of Chemical Physics, 1983. 78(6): p. 4066-4073.
26. Reed, A.E., Curtiss, L.A., and Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 1988. 88(6): p. 899-926.
27. Weinhold, F., Natural bond orbital analysis: a critical overview of relationships to alternative bonding perspectives. Journal of computational chemistry, 2012. 33(30): p. 2363-2379.
28. Atkins, P. and De Paula, J., Atkins’ physical chemistry. New York, 2006: p. 77.
29. Miessler, G. and Tarr, D., Inorganic Chemistry. 2003. Upper Saddle River, NJ: Pearson Prentice Hall.
30. Weinhold, F., For a deeper discussion of this approach, see for example: Reed, AE; Curtiss, LA; Weinhold, F. Chem. Rev, 1988. 88: p. 899.
31. Weinhold, F., Chemistry: A new twist on molecular shape. Nature, 2001. 411(6837): p. 539.
32. Pophristic, V. and Goodman, L., Hyperconjugation not steric repulsion leads to the staggered structure of ethane. Nature, 2001. 411(6837): p. 565.
33. Alabugin, I.V., Manoharan, M., Peabody, S., and Weinhold, F., Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. Journal of the American Chemical Society, 2003. 125(19): p. 5973-5987.
34. Lee, H.Y., Wang, S.P., and Chang, T.C., Bond types of molecular orbitals and the photoelectron spectrum. International Journal of Quantum Chemistry, 2001. 81(1): p. 53-65.
35. Hsu, W.Y., Lee, H.Y., Wang, S.P., and Chang, T.C., The Fock Matrix Analysis for Atomic Orbitals in Molecular Orbitals I. A New Look on the Covalent Bond in H2? Journal of the Chinese Chemical Society, 2007. 54(6): p. 1463-1470.
36. Hsu, W.Y., Lee, H.Y., Wang, S.P., and Chang, T.C., The Fock Matrix Analysis for Atomic Orbitals in Molecular Orbitals II. The Electronic Structure of N2 Molecules. Journal of the Chinese Chemical Society, 2008. 55(1): p. 97-102.
37. Lee, M.-H., Shyu, K.-K., Lee, P.-L., Huang, C.-M., and Chiu, Y.-J., Hardware implementation of EMD using DSP and FPGA for online signal processing. IEEE Transactions on industrial electronics, 2011. 58(6): p. 2473-2481.
38. Mulliken, R.S., Electronic structures of polyatomic molecules and valence. V. Molecules RX n. The Journal of Chemical Physics, 1933. 1(7): p. 492-503.
39. Solomons, T.G. and Fryhle, C.B., Organic Chemistry John Wiley&Sons. Inc., 2000: p. 1125.
40. Carey, F.A. and Sundberg, R.J., Advanced organic chemistry: part A: structure and mechanisms. 2007: Springer Science & Business Media.
41. Mulliken, R.S., Electronic structures of polyatomic molecules. IX. Methane, ethane, ethylene, acetylene. The Journal of Chemical Physics, 1935. 3(8): p. 517-528.
42. Mulliken, R.S., Intensities of electronic transitions in molecular spectra IV. Cyclic dienes and hyperconjugation. The Journal of Chemical Physics, 1939. 7(5): p. 339-352.
43. Sovers, O., Kern, C., Pitzer, R., and Karplus, M., Bond‐Function Analysis of Rotational Barriers: Ethane. The Journal of Chemical Physics, 1968. 49(6): p. 2592-2599.
44. Goodman, L. and Gu, H., Flexing analysis of steric exchange repulsion accompanying ethane internal rotation. The Journal of chemical physics, 1998. 109(1): p. 72-78.
45. Goodman, L., Gu, H., and Pophristic, V., Flexing analysis of ethane internal rotation energetics. The Journal of chemical physics, 1999. 110(9): p. 4268-4275.
46. Goodman, L., Pophristic, V., and Weinhold, F., Origin of methyl internal rotation barriers. Accounts of Chemical Research, 1999. 32(12): p. 983-993.
47. Craig, N.C., Chen, A., Suh, K.H., Klee, S., Mellau, G.C., Winnewisser, B.P., and Winnewisser, M., Contribution to the study of the gauche effect. The complete structure of the anti rotamer of 1, 2-Difluoroethane. Journal of the American Chemical Society, 1997. 119(20): p. 4789-4790.
48. O'Hagan, D., Understanding organofluorine chemistry. An introduction to the C–F bond. Chemical Society Reviews, 2008. 37(2): p. 308-319.
49. Goodman, L., Gu, H., and Pophristic, V., Gauche effect in 1, 2-difluoroethane. Hyperconjugation, bent bonds, steric repulsion. The Journal of Physical Chemistry A, 2005. 109(6): p. 1223-1229.
50. Alabugin, I.V., Bresch, S., and Passos Gomes, G., Orbital hybridization: a key electronic factor in control of structure and reactivity. Journal of Physical Organic Chemistry, 2015. 28(2): p. 147-162.
51. Wheland, G., The quantum mechanics of unsaturated and aromatic molecules: a comparison of two methods of treatment. The Journal of Chemical Physics, 1934. 2(8): p. 474-481.
52. Brockway, L., The structures of the fluorochloromethanes and the effect of bond type on chemical reactivity. Journal of Physical Chemistry, 1937. 41(2): p. 185-195.
53. Roberts, J.D., Webb, R.L., and McElhill, E.A., The electrical effect of the trifluoromethyl group. Journal of the American Chemical Society, 1950. 72(1): p. 408-411.
54. Juaristi, E. and Cuevas, G., Recent studies of the anomeric effect. Tetrahedron, 1992. 48(24): p. 5019-5087.
55. Hoffmann, R., Radom, L., Pople, J.A., Schleyer, P.v.R., Hehre, W.J., and Salem, L., Strong conformational consequences of hyperconjugation. Journal of the American Chemical Society, 1972. 94(17): p. 6221-6223.
56. von Ragué Schleyer, P. and Kos, A.J., The importance of negative (anionic) hyperconjugation. Tetrahedron, 1983. 39(7): p. 1141-1150.
57. Schneider, W.F., Nance, B.I., and Wallington, T.J., Bond Strength Trends in Halogenated Methanols: Evidence for Negative Hyperconjugation? Journal of the American Chemical Society, 1995. 117(1): p. 478-485.
58. Murrell, J.N., Kettle, S.F.A., and Tedder, J.M., The chemical bond. 1978: Wiley Chichester.
59. Daintith, J., A dictionary of chemistry. 2008: OUP Oxford.
60. McGraw-Hill, McGraw-Hill concise encyclopedia of chemistry. 2004: McGraw-Hill Professional.
61. Zumdahl, S. and DeCoste, D.J., Chemical principles. 2012: Nelson Education.
62. Silberberg, M., Chemistry: The molecular Nature of Matter and Change. McGraw Hill. New York, NY, 2006.
63. Atkins, P., Shriver and Atkins' inorganic chemistry. 2010: Oxford University Press, USA.
64. Schläfer, H.L. and Gliemann, G., Basic principles of ligand field theory. 1969: John Wiley & Sons.
65. Miessler, G.L. and Tarr, D.A., Coordination compounds. Inorganic chemistry, 1999. 642: p. 315-316.
66. Reimann, B., Buchhold, K., Vaupel, S., Brutschy, B., Havlas, Z., Špirko, V., and Hobza, P., Improper, blue-shifting hydrogen bond between fluorobenzene and fluoroform. The Journal of Physical Chemistry A, 2001. 105(23): p. 5560-5566.
67. Wilkens, S.J., Westler, W.M., Weinhold, F., and Markley, J.L., Trans-Hydrogen-Bond h2 J NN and h1 J NH Couplings in the DNA A− T Base Pair: Natural Bond Orbital Analysis. Journal of the American Chemical Society, 2002. 124(7): p. 1190-1191.
68. Mitzel, N.W. and Losehand, U., β-donor interactions of exceptional strength in N, N-dimethylhydroxylaminochlorosilane, ClH2SiONMe2. Journal of the American Chemical Society, 1998. 120(29): p. 7320-7327.
69. Ananthavel, S. and Manoharan, M., A theoretical study on electron donor–acceptor complexes of Et2O, Et2S and Me3N with interhalogens, I–X (X= Cl and Br). Chemical Physics, 2001. 269(1-3): p. 49-57.
70. Reed, A.E., Weinhold, F., Curtiss, L.A., and Pochatko, D.J., Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. The Journal of Chemical Physics, 1986. 84(10): p. 5687-5705.
71. Anane, H., Boutalib, A., Nebot-Gil, I., and Tomás, F., Comparative G2 (MP2) study of H3NBX3 and H3PBX3 (X= H, F, and Cl) donor− acceptor complexes. The Journal of Physical Chemistry A, 1998. 102(35): p. 7070-7073.
72. Yang, W. and Drueckhammer, D.G., Understanding the relative acyl-transfer reactivity of oxoesters and thioesters: computational analysis of transition state delocalization effects. Journal of the American Chemical Society, 2001. 123(44): p. 11004-11009.
73. Miehlich, B., Savin, A., Stoll, H., and Preuss, H., Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters, 1989. 157(3): p. 200-206.
74. Mohan, J., Organic spectroscopy: principles and applications. 2004: Crc Press.
75. Domingo, L.R. and Sáez, J.A., Understanding the mechanism of polar Diels–Alder reactions. Organic & biomolecular chemistry, 2009. 7(17): p. 3576-3583.
76. Parr, R.G., Szentpaly, L.v., and Liu, S., Electrophilicity index. Journal of the American Chemical Society, 1999. 121(9): p. 1922-1924.
77. Parr, R.G. and Pearson, R.G., Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 1983. 105(26): p. 7512-7516.
78. Su, W.L., Wang, C.C., and Wang, S.P., The Pi‐Nature of Methyl Obtained by the Natural Bond Orbital Method: Orbital‐Based Rationalizations of Site‐Dependent Substitution Effects on Fine Color‐Tuning of Luminescence. Journal of the Chinese Chemical Society, 2012. 59(11): p. 1385-1389.
79. Becke, A.D., Density‐functional thermochemistry. III. The role of exact exchange. The Journal of chemical physics, 1993. 98(7): p. 5648-5652.
80. Lee, C., Yang, W., and Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 1988. 37(2): p. 785.
81. Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Zakrzewski, V., Montgomery Jr, J., Stratmann, R.E., and Burant, J., Gaussian 98, revision a. 7; gaussian. Inc., Pittsburgh, PA, 1998. 12.
82. Irfan, A., Cui, R., Zhang, J., and Hao, L., Push–pull effect on the charge transfer, and tuning of emitting color for disubstituted derivatives of mer-Alq3. Chemical Physics, 2009. 364(1-3): p. 39-45.
83. Shi, M.-M., Lin, J.-J., Shi, Y.-W., Ouyang, M., Wang, M., and Chen, H.-Z., Achieving blue luminescence of Alq3 through the pull-push effect of the electron-withdrawing and electron-donating substituents. Materials Chemistry and Physics, 2009. 115(2-3): p. 841-845.
84. Shi, Y.-W., Shi, M.-M., Huang, J.-C., Chen, H.-Z., Wang, M., Liu, X.-D., Ma, Y.-G., Xu, H., and Yang, B., Fluorinated Alq 3 derivatives with tunable optical properties. Chemical Communications, 2006(18): p. 1941-1943.
85. O'boyle, N.M., Tenderholt, A.L., and Langner, K.M., Cclib: a library for package‐independent computational chemistry algorithms. Journal of computational chemistry, 2008. 29(5): p. 839-845.
86. Zhou, G., Ho, C.L., Wong, W.Y., Wang, Q., Ma, D., Wang, L., Lin, Z., Marder, T.B., and Beeby, A., Manipulating Charge‐Transfer Character with Electron‐Withdrawing Main‐Group Moieties for the Color Tuning of Iridium Electrophosphors. Advanced functional materials, 2008. 18(3): p. 499-511.
87. Zhou, G., Wang, Q., Wang, X., Ho, C.-L., Wong, W.-Y., Ma, D., Wang, L., and Lin, Z., Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. Journal of Materials Chemistry, 2010. 20(35): p. 7472-7484.
88. Friedman, D.S., Francl, M.M., and Allen, L.C., Anionic hyperconjugation. Tetrahedron, 1985. 41(3): p. 499-506.
89. Reed, A.E. and Schleyer, P.v.R., The anomeric effect with central atoms other than carbon. 1. Strong interactions between nonbonded substituents in polyfluorinated first-and second-row hydrides. Journal of the American Chemical Society, 1987. 109(24): p. 7362-7373.
90. Reed, A.E. and Schleyer, P.v.R., Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation. Journal of the American Chemical Society, 1990. 112(4): p. 1434-1445.
91. Salzner, U. and von Raguè Schleyer, P., CH4− nXn: a comparison between the stabilized X F series and the destabilized X CN series. Chemical physics letters, 1992. 190(5): p. 401-406.
92. Schleyer, P.v.R., Jemmis, E.D., and Spitznagel, G.W., Do anomeric effects involving the second-row substituents, chlorine, mercapto, and phosphino exist? Stabilization energies and structural preferences. Journal of the American Chemical Society, 1985. 107(22): p. 6393-6394.
93. Rablen, P.R., Hoffmann, R.W., Hrovat, D.A., and Borden, W.T., Is hyperconjugation responsible for the “gauche effect” in 1-fluoropropane and other 2-substituted-1-fluoroethanes? Journal of the Chemical Society, Perkin Transactions 2, 1999(8): p. 1719-1726.
94. Maynard, A., Huang, M., Rice, W., and Covell, D., Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proceedings of the National Academy of Sciences, 1998. 95(20): p. 11578-11583.
95. Yuan, L., Liu, J., Wen, J., and Zhao, H., Self-assembly of a diblock copolymer with pendant disulfide bonds and chromophore groups: a new platform for fast release. Langmuir, 2012. 28(30): p. 11232-11240.
96. Lin, H.S., Lu, S.Y., Huang, F.Y., Wu, Y., Su, W.L., and Wang, S.P., An Insight of the Results Provided by Color‐Tuning Studies Made on Ir (III) Complexes: A pi‐Neutral CF3 Group Viewed by Adjusting Energies of pi‐type Molecular Orbitals. Journal of the Chinese Chemical Society, 2015. 62(11): p. 939-943.
97. Chang, T.-J., Jiang, Y.-D., Chang, C.-H., Chung, C.-H., Yu, N.-C., and Chuang, L.-M., Accountability, utilization and providers for diabetes management in Taiwan, 2000–2009: An analysis of the National Health Insurance database. Journal of the Formosan Medical Association, 2012. 111(11): p. 605-616.
98. Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A.L., Tsapas, A., Wender, R., and Matthews, D.R., Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2012. 55(6): p. 1577-1596.
99. Garber, A., Abrahamson, M., Barzilay, J., Blonde, L., Bloomgarden, Z., Bush, M., Dagogo-Jack, S., Davidson, M., Einhorn, D., and Garvey, W., AACE comprehensive diabetes management algorithm 2013. Endocrine Practice, 2013. 19(2): p. 327-336.
校內:2024-08-09公開