| 研究生: |
劉虹伶 Liu, Hung-Ling |
|---|---|
| 論文名稱: |
Effects of Poly(p-vinylphenol) on Borderline Miscible Blends of Poly(vinyl acetate) and Poly(methyl methacrylate) Effects of Poly(p-vinylphenol) on Borderline Miscible Blends of Poly(vinyl acetate) and Poly(methyl methacrylate) |
| 指導教授: |
吳逸謨
Woo, Ea Mor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 三成分摻合系統 、相容性 |
| 外文關鍵詞: | ternary blend, miscibility |
| 相關次數: | 點閱:84 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微分掃描熱卡計(DSC),偏光顯微鏡(POM),掃描式電子顯微鏡(SEM)與傅立葉紅外線光譜儀(FTIR)來觀察、鑑定poly(vinyl acetate)/poly(p-vinylphenol)/poly(methyl methacrylate) (PVAc/PVPh/PMMA)三成分摻合系統相容性和分子量對相容性之影響效應。在LPVAc/PVPh/LPMMA系統 (其中LPVAc分子量為12,500g/mol之PVAc及LPMMA分子量為15,000g/mol之PMMA),發現PVPh能夠維持約相等的氫鍵作用力於LPVAc及LPMMA之間,使三高分子混合物之間保持均等之作用力。此外當提高摻合物PVAc與PMMA之分子量(PVAc分子量由12,800→260,000g/mol與PMMA分子量由15,000→100,000g/mol)後,則此三成分系統之相型態會由完全相容轉變為部分相容,且皆具有下臨界溶液溫度(LCST)的行為。當使用主鏈上具有酯基團的poly(1,4 butylene adipate) (PBA)取代側鏈上含有酯基團的PVAc,而形成PBA/PMMA摻合系統時,其相型態由原先PVAc/PMMA的LCST行為轉變為上臨界溶液溫度(UCST)行為。當加入PVPh而成為PBA/PVPh/PMMA三成分摻合系統時,其相型態也與兩成分系統相同呈現UCST之相行為。
Effect of molecular weight on the miscibility and morphology of poly(vinyl acetate)/poly(p-vinyl phenol)/poly(methyl methacrylate) (PVAc/PVPh/PMMA) ternary blends were investigated by using differential scanning calorimeter (DSC), polarized-optical microscopy (POM), scanning electron microscopy(SEM), and fourier transform infrared spectrometer (FTIR) in this study. In the LPVAc/PVPh/LPMMA (LPVAc Mw=12,500g/mol of PVAc;LPMMA Mw=15,000 g/mol of PMMA) ternary blends, it is observed that PVPh is capable of maintaining roughly equal hydrogen-bonding interactions with either LPVAc or LPMMA in the ternary mixtures to maintain balanced interactions among the ternary mixtures. Therefore, with increasing the molecular weight of PVAc and PMMA(PVAc Mw=12,800→260,000 g/mol and PMMA Mw=15,000→100,000 g/mol), the miscibility in PVAc/PVPh /PMMA is decreased and a partial miscible ternary blends with lower critical solution temperature (LCST) phase behavior is obtained. The phase behavior in poly(1,4 butylene adipate)/poly(methyl methacrylate)(PBA/PMMA )blends is also discussed and is observed to exhibit the upper critical solution temperature (UCST) behavior. This phase behavior is different with the LCST behavior in the other carbonyl group containing polymer blends like, PVAc/PMMA blends. After introducing the PVPh into PBA/PMMA blends, the PBA/PVPh/PMMA ternary system is obtained and displays the similar UCST phase behavior as PBA/PMMA binary blends.
1. S. H. Goh and K. S. Siow, Polym. Bull., 17, 453 (1987).
2. C. J. Serman, P. C. Painter and M. M. Coleman, Polymer, 32, 1049 (1991).
3. D. Li and J. Brisson, Macromolecules, 29, 868 (1996).
4. J. A. Pomposo, I. Equiazabal, E. Calahorra and M.Cortazar, Polymer, 34, 95 (1993).
5. E. J. Moskala, S. E. Howe, P. C. Painter and M. M. Coleman, Macromolecule, 17, 1671 (1984).
6. E. G. Lezcano, C. S. Coll and M. G. Prolongo, Macromolecules, 25, 6849 (1992).
7. S. Zhang, P. C. Painter and J. Runt, Macromolecules, 35, 8478 (2002).
8. E. G. Crispim, A. F. Rubira and E. C. Muniz, Polymer, 40, 5129 (1999).
9. S. Zheng, J. Huang, J. Li and Q. Guo, J. Appl. Polym. Sci., 69, 675 (1998).
10. W. K. Lee, W. J. Cho and C. S. Ha, Polymer, 36, 1229 (1995).
11. Q. Guo and Z. Liu, J. Therm. Anal. Cal., 59, 101 (2000).
12. M. Song, Y. Huang, Z. Sun and B. Jiang, Polym. Bull., 25, 515 (1991).
13. Q. Guo, Polym. Commun., 31, 217 (1990).
14. M. Song, H. Liang and B. Jiang, Polym. Bull., 23, 615 (1990).
15. R. J. Peterson, R. D. Corneliussen and L. T. Rozelle, Polym. Prepr. Am. Chem. Soc., Div. Polym. Chem., 10, 385 (1969).
16. H. Yang, P. Zhu, F. Ren, Y. Wang and Y. Zhang, Eur. Polym. J., 36, 21 (2000).
17. S. Ichihara, A. Komatsu and T. Hata, Polym. J., 2, 640 (1971).
18. K. Friese, Plast Kaut, 15, 646 (1968).
19. M. Song and F. Long, Eur. Polym. J., 27, 983 (1991).
20. Z. Y. Wang, M. Konno and S. Saito, J. Chem. Eng. Jpn., 24, 256 (1990).
21. J. A. Pomposo, E. Calahorra, I. Equiazabal and M. Cortazar, Macromolecules, 26, 2104 (1993).
22. M. Hosokawa and S. Akiyama, Polym. J., 31, 13 (1999).
23. B. Ameduri and R. E. Prud’homme, Polymer, 29, 1052 (1988).
24. C. J. T. Landry, H. Yang and J. S. Machell, Polymer, 32, 44 (1991).
25. S. H. Goh and K. S. Siow, Thermochim. Acta., 105, 191 (1986).
26. D. Pinoit, and R. E. Prud’homme, Polymer, 43, 2321 (2002).
27. J. M. G. Cowie, G. Li and I. J. McEwen, Polymer, 35, 5518 (1994).
28. H. Zhang, D. E. Bhagwagar, J. F. Graf, P. C. Painter and M. M. Coleman, Polymer, 35, 5379 (1994).
29. C. C. Hsu and J. M. Prausnitz, Macromolecules, 7, 320 (1974).
30. I. Zeman and D. Patterson, Macromolecules, 10, 706 (1977).
31. G. R. Brannock and D. R. Paul, Macromolecules, 23, 5240 (1990).
32. S. N. Yau and E. M. Woo, Macromol. Rapid. Commun., 17, 615 (1996).
33. Y. C. Tseng and E. M. Woo, Macromol. Rapid. Commun., 19, 215 (1998).
34. L. L. Chang Ph.D. Thesis, Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan. (2003).
35. S. C. Lee and E. M. Woo, J. Polym. Sci., B, Polym. Phys., 40, 747 (2002).
36. C. C. Su, J. H. Lin and E. M. Woo, Polymer International, 52, 1209 (2003).
37. S. H. Goh, X. Ni, Polymer, 40, 5733 (1999).
38. H. K. Jeong, M. D. Rooney, J. David, W. J. MacKnight, F. E. Karasz and T. Kajiyama, Polymer, 41, 6671 (2000).
39. M. Hosokawa and S. Akiyama, Polym. J., 31, 13 (1999).
40. H. Tompa, Trans. Faraday. Soc., 45, 1140 (1949).
41. L. Zeman and D. Patterson, Macromolecules, 5, 513 (1972).
42. D. Patterson, Polym. Eng. Sci., 22, 64 (1982).
43. A. C. Su and J. R. Fried, Polym. Eng. Sci., 27, 1657 (1987).
44. C. C. Hsu and J. M. Prausnitz, Macromolecules, 7, 320 (1974).
45. D. Patterson, Macromolecules, 11, 690 (1978).
46. S. Klotz and H. J. Cantow, Polymer, 31, 315 (1990).
47. Q. Guo, Eur. Polym. J., 32, 1409 (1996).
48. R. J. Young and P. A. Lovell, “Introduction to polymer” , Chapman & Hall (1991).
49. D. R. Pual and S. Newman, “Polymer Blend” , Academic Press Inc. (1987).
50. L. H. Sperling, “Introduction to physical polymer science” , John Wiley & Sons (1992).
51. D. J. Walsh, J. S. Higgins and A. Maconndchie, “Polymer Blends and Mixtures” , Mijhoff Publishers (1985).
52. O. Olabishi, L. M. Robeson and M. T. Shaw, “Polymer-Polymer Miscibility”, Academic Press Inc., New York. (1979).
53. P. J. Flory, “Principles of Polymer Chemistry” , Cornell University Press, Ithaca, NY, (1953).
54. J. R. Fried “Polymer Science and Technology” , Prentice Hall, Inc. (1995).
55. R. Jorda and G. L. Wilkes, Polym. Bull., 20, 479 (1988).
56. M. Bosma, G. T. Brinke and T. S. Ellis, Macromolecules, 21, 1465 (1988).
57. X. Lu and R. A. Weiss, Macromolecules, 24, 4381 (1991).
58. X. Lu and R. A. Weiss, Macromolecules, 25, 3242 (1992).
59. Y. S. Chun, H. S. Lee, H. C. Jung and W. N. Kim, J. Appl. Polym. Sci., 72, 733 (1999).
60. Y. S. Chun, J. Park, J. B. Sun and W. N. Kim, J. Polym. Sci., B, Polym. Phys., 38, 2072 (2000).
61. Y. S. Chun, H. S. Kwon, W. N. Kim and H. G. Yoon, J. Appl. Polym. Sci., 78, 2488 (2000).
62. W. N. Kim and C. M. Burns, J. Appl. Polym. Sci., 34, 945 (1987).
63. R. L. Scott, J. Chem. Phys., 17, 279 (1949).
64. J. Dong and Y. Ozaki, Macromolecules, 30, 286 (1997).