簡易檢索 / 詳目顯示

研究生: 李品昀
Li, Pin-Yun
論文名稱: 應用於立方衛星之增阻離軌機構開發
Development of Deployable Mechanism for CubeSat De-Orbiting Applications
指導教授: 梁育瑞
Liang, Yu-Jui
學位類別: 碩士
Master
系所名稱: 工學院 - 太空系統工程研究所
Institute of Space Systems Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 68
中文關鍵詞: 立方衛星展開機構增阻離軌裝置捲收型展開管杆
外文關鍵詞: CubeSat deployable mechanism, Drag enhancement deorbit device, Rollable composite boom
相關次數: 點閱:34下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來低地球軌道(LEO)衛星發射數量急遽增加,太空碎片問題日益嚴重,對軌道環境與未來太空任務安全構成實質威脅。根據國際監測數據,目前在軌運行的衛星已超過 9000 顆,且每年發射數量仍持續攀升。為減少衛星退役後的碎片殘留風險,全球各大太空機構相繼提出更嚴格的衛星離軌要求。在「五年離軌新規」背景下,發展具備被動離軌能力的酬載模組,已成為新世代小型衛星設計中不可或缺的任務要求,也成為展現太空責任與工程實力的重要指標。
    為因應此需求,本研究專注於開發一套應用於1U立方衛星的增阻離軌裝置。裝置核心為一組可展開式帆面結構,搭配四支捲收型展開管杆與小型電動驅動馬達,可於任務結束後主動展開,利用大氣阻力加速衛星軌道衰減,達成自主離軌目標。帆面材料選用未鍍鋁之Mylar薄膜,以兼顧質量輕量化與阻力效益,整體裝置封裝於1U空間內,展開後可提供約 1 平方公尺的有效拖曳面積,並預留未來可變帆面與模組化擴展能力。結構設計參考 NASA ACS3 與 LightSail-2 任務成果,並調整為適用於台灣在地製造條件與立方衛星系統需求。於系統工程層面,本裝置設計同步考量與姿態控制模組、衛星電源與結構段的整合相容性,確保部署後不影響其他子系統之運作。本研究不僅完成機構設計、材料選型與部件開發,亦建立一套可重複應用的設計流程與介面配置邏輯,為日後立方衛星任務納入增阻離軌模組提供標準化依據,具備高度應用潛力與系統拓展彈性。

    The escalating number of satellites in Low Earth Orbit (LEO) is intensifying the space debris crisis, posing a significant threat to future space missions. Global space agencies are thus implementing stricter "Five-Year Deorbit Rules." To meet this critical demand, this research presents a drag-enhancement deorbiting device for 1U CubeSats.
    Our device features a deployable sail structure with four rollable composite booms and a small electric motor. Designed to actively deploy post-mission, it leverages atmospheric drag to accelerate orbital decay and achieve autonomous deorbiting. The sail, made from uncoated Mylar film, ensures lightweight efficiency. The entire module fits into a 1U volume, expanding to provide approximately 1 square meter of drag area. Its design draws inspiration from NASA's ACS3 and LightSail-2 missions, adapted for local manufacturing and CubeSat system integration.
    This research not only completes the mechanical design and material selection but also establishes a reusable design process and interface logic. This work offers a standardized, highly adaptable solution for integrating drag-enhancement deorbiting modules into future CubeSat missions.

    中文摘要 i Abstract ii 致謝 vi 第一章 緒論 - 1 - 1.1 研究背景與動機 - 1 - 1.2 文獻回顧 - 3 - 1.2.1 國際離軌規範與太空環境管理需求 - 3 - 1.2.2 增阻離軌技術概述與原理 - 3 - 1.2.3 展開機構材料與類型分類 - 5 - 1.2.4 立方衛星之展開機構設計技術與應用 - 7 - 1.3 研究目標 - 11 - 第二章 增阻離軌裝置設計 - 12 - 2.1 設計考量因素 - 12 - 2.2 空氣阻力與軌道衰減 - 13 - 2.3 材料性質對於機構設計之影響 - 15 - 2.4 結構與機械設計 - 17 - 2.4.1 正方形收納盒與馬達連接處 - 21 - 2.4.2 管杆與機構連接桶 - 22 - 第三章 原型製作流程 - 26 - 3.1 原型製作流程 - 26 - 3.2 模態分析 - 27 - 3.3 隨機振動分析 - 34 - 3.4 結果分析 - 37 - 第四章 製造加工與測試 - 38 - 4.1 組裝與整合測試 - 42 - 4.2 裝配順序 - 45 - 4.3 初步測試結果與問題分析 - 49 - 第五章 結論與未來展望 - 50 - 5.1 結論 - 50 - 5.2 研究貢獻與影響 - 51 - 5.3 未來研究方向 - 51 - 第六章 參考文獻 - 53 -

    [1] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs, "CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation," 2000.
    [2] J. Puig-Suari, C. Turner, and R. Twiggs, "CubeSat: the development and launch support infrastructure for eighteen different satellite customers on one launch," 2001.
    [3] M. Swartwout, "The first one hundred cubesats: A statistical look," Journal of small Satellites, vol. 2, no. 2, pp. 213-233, 2013.
    [4] S. W. Asmar and S. Matousek, "Mars Cube One (MarCO) shifting the paradigm in relay deep space operation," in 14th International Conference on Space Operations, 2016, p. 2483.
    [5] T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi, "Towards the thousandth CubeSat: A statistical overview," International Journal of Aerospace Engineering, vol. 2019, no. 1, p. 5063145, 2019.
    [6] H. Klinkrad, Space debris: models and risk analysis. Springer Science & Business Media, 2006.
    [7] "FCC-22-74A1 SECOND REPORT AND ORDER," Federal Communications Commission, 2022.
    [8] S. C. Nagavarapu, L. B. Mogan, A. Chandran, and D. E. Hastings, "CubeSats for space debris removal from LEO: Prototype design of a robotic arm-based deorbiter CubeSat," Advances in Space Research, vol. 75, no. 9, pp. 6896-6910, 2025.
    [9] "GUIDELINES FOR THE LONG-TERM SUSTAINABILITY OF OUTER SPACE ACTIVITIES OF THE COMMITTEE ON THE PEACEFUL USES OF OUTER SPACE," United Nations Office for Outer Space Affairs, 2021.
    [10] L. Niccolai and G. Mengali, "Performance estimate of a spin-stabilized drag sail for spacecraft deorbiting," Applied Sciences, vol. 14, no. 2, p. 612, 2024.
    [11] M. Straubel, P. Seefeldt, P. Spietz, and C. Huehne, "The design and test of the gossamer-1 boom deployment mechanisms engineering model," in 2nd AIAA Spacecraft Structures Conference, 2015, p. 1837.
    [12] A. C. Long and D. A. Spencer, "A scalable drag sail for the deorbit of small satellites," Journal of Small Satellites, vol. 7, no. 3, pp. 773-788, 2018.
    [13] L. Santos Lula Barros et al., "Evaluation of Folding-Pattern Designs for Large-Scale Square Solar Sail," presented at the International Symposium on Space Technology and Science, 2023.
    [14] Z. Pengyuan, W. Chenchen, and L. Yangmin, "Design and application of solar sailing: A review on key technologies," Chinese Journal of Aeronautics, vol. 36, no. 5, pp. 125-144, 2023.
    [15] J. Puig-Suari, C. Turner, and W. Ahlgren, "Development of the standard CubeSat deployer and a CubeSat class PicoSatellite," in 2001 IEEE aerospace conference proceedings (Cat. No. 01TH8542), 2001, vol. 1: IEEE, pp. 1/347-1/353 vol. 1.
    [16] O. Wallrapp and S. Wiedemann, "Simulation of deployment of a flexible solar array," Multibody System Dynamics, vol. 7, pp. 101-125, 2002.
    [17] T. Li, "Deployment analysis and control of deployable space antenna," Aerospace Science and Technology, vol. 18, no. 1, pp. 42-47, 2012.
    [18] M. Leipold, D. Kassing, M. Eiden, and L. Herbeck, "Solar sails for space exploration- The development and demonstration of critical technologies in partnership," ESA bulletin, no. 98, pp. 102-107, 1999.
    [19] D. A. Spencer, B. Betts, J. M. Bellardo, A. Diaz, B. Plante, and J. R. Mansell, "The LightSail 2 solar sailing technology demonstration," Advances in Space Research, vol. 67, no. 9, pp. 2878-2889, 2021.
    [20] W. K. Wilkie, "Overview of the nasa advanced composite solar sail system (acs3) technology demonstration project," in AIAA Scitech 2021 Forum, 2021, p. 1260.
    [21] C. Palla, J. Kingston, and S. Hobbs, "Development of commercial drag-augmentation systems for small satellites," 2017.
    [22] J. L. Rhatigan and W. Lan, "Drag-enhancing deorbit devices for spacecraft self-disposal: A review of progress and opportunities," Journal of Space Safety Engineering, vol. 7, no. 3, pp. 340-344, 2020.
    [23] Y.-H. C. YU-HSIN CHEN*, YA-XUN YANG, CHAO-HSIEN CHIH, PIN-YUN LI, YI-TING SUNG, HSIN-CHENG LIAO, WEI-TING LIN, "SATELLA: Operating Aerodynamics in Low Earth Orbit," Institute of Space Systems Engineering and Department of Aeronautics and Astronautics, National Cheng Kung University, 2024.
    [24] "CubeSat CDS REV14_1," 2022.
    [25] "falcon-users-guide," SpaceX, 2021.

    無法下載圖示 校內:立即公開
    校外:2025-11-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE