| 研究生: |
姬梁文 Ji, Liang-Wen |
|---|---|
| 論文名稱: |
自組式氮化物奈米結構的成長與其光電元件之應用 Growth of Self-Organized III-Nitride Nanostructures and Their Application to Optoelectronic Devices |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin 張守進 Chang, Soou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 銦鎵氮 、量子點 |
| 外文關鍵詞: | InGaN, quantum dot |
| 相關次數: | 點閱:124 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的內容主要是以金屬有機物化學汽相磊晶法(metalorganic vapor phase epitaxy, MOVPE)成長銦鎵氮自組式量子點(self-assembled quantum dots, SAQDs),應用於相關的光電元件如量子點發光二極體(light-emitting diodes, LEDs)與金屬-半導體-金屬光檢測器(meta-semiconductor-metal photodiodes, MSM PDs),並分析元件特性。我們以光致激發螢光光譜(photoluminescence, PL)、拉曼光譜(Raman)、掃瞄近場光學顯微鏡(scanning near-field optical microscopy, SNOM)、原子力顯微鏡(atomic force microscopy, AFM)、高解析穿透式電子顯微鏡(high-resolution transmission electron microscopy, HRTEM)分析銦鎵氮奈米結構的光學與結構特性。論文中主要的研究工作分為以下四個部分討論。
為了成長奈米級(nanometer scale)的銦鎵氮自組式量子點,我們提供了一個特異的技術於金屬有機物化學汽相磊晶成長過程。引入中斷成長(growth interruption)的方法於銦鎵氮的磊晶程序,也就是使用12秒的中斷成長時間,我們成功得到了半徑25 nm高4.1 nm的奈米尺度的銦鎵氮自組式量子點,而量子點的密度推估為2×1010 cm-2。相反地,未採用此方式則成長出較大且分佈不均勻的三維島狀物(3D islands)。使用中斷成長得到的樣品,與直接成長的樣品比較,其PL有72 meV的巨大藍移(blueshift),此時量子侷限史塔克效應(quantum-confined Stark effect, QCSE)、銦的含量與量子點的尺寸效應都將影響PL能量峰(energy peak)的移動與半高寬(full widths at half maximum, FWHM)的大小。在變溫拉曼的量測中,E2H是對於雙軸張力(biaxial strain)極為敏感的聲子模(phonon modes),而銦鎵氮自組式量子點的樣品中E2H藍移3 cm-1,遠超過其他樣品的藍移值(1.7 cm-1和1.6 cm-1),顯示量子點樣品中的銦鎵氮磊晶層有很強的壓縮應力(compressive stress)存在。
以MOVPE與熱退火(thermal annealing)的方法(740C,20分鐘)在銦鎵氮的表面成長直立的自組式奈米針(nanotips),並且大部分的奈米針位於三維島狀物的上面。而這些奈米針的高度是20 nm,寬度則是1 nm,奈米針局部的密度高達1.6×1013 cm-2。我們也討論這樣的奈米針可能形成的物理機制。
我們把DWELL(dots-in-a-well)結構用在氮化鎵的LED當中。HRTEM影像顯示量子阱中的銦鎵氮自組式量子點有3 nm的高度與10 nm的寬度,而銦鎵氮材料的波耳半徑(Bohr radius)是3.6 nm,TEM結果顯示本研究的銦鎵氮自組式量子點尺寸已達量子效應的範圍。在20 mA的直流注入電流作用下,量子點LED與量子阱LED的順向電壓分別為3.1和3.5 V。我們也發現了量子點LED的電致激發螢光光譜(electroluminescence, EL)的能量峰變動對於注入電流是很敏感的。
我們製作了一個具有銦鎵氮自組式量子點的MSM光偵測器,並與傳統的銦鎵氮MSM光偵測器做比較。SNOM的結果顯示MSM光偵測器的銦鎵氮自組式量子點對於SNOM光源(457-514 nm)可能有較好的吸收率,說明了量子點的深侷限(deep localization)的效應。量子點光偵測器有較低的暗電流(dark current)且能操作在光源垂直入射的模式下,與其他無量子點結構的傳統MSM光偵測器相比,光電流(photocurrent)與暗電流比例也大了很多。具有量子點的MSM光偵測器與傳統MSM光偵測器的光響應度(responsivity) 作比較,我們發現在短波長(<350 nm)與長波長(>480 nm)的位置都有一個級數(order)的差距,也就是前者比後者光偵測器有較大的光響應度,而在中段波長(390 - 460 nm)的光響應度作比較,則兩者光偵測器的光響應度相差不多。
This dissertation includes the growth and characterization of InGaN/GaN self-assembled quantum dots (SAQDs) and related optoelectronic devices (MQD LEDs and MSM PDs with QDs) by metalorganic vapor phase epitaxy (MOVPE). The optical and structural properties of InGaN/GaN nanostructures have been characterized by photoluminescence (PL), Raman, scanning near-field optical microscopy (SNOM), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM), respectively. The main work can be devided into the following four parts.
First, we provides a novel technique in metalorganic vapor phase epitaxy (MOVPE) for growing nanometer scale InGaN SAQDs. Growth interruption method had been introduced into epitaxial processes of InGaN layers, i.e. with 12-s growth interruption time, we successfully formed InGaN SAQDs with a typical lateral size of 25 nm and an average height of 4.1 nm. The QDs density is estimated to 2×1010 cm-2. In contrast, much larger InGaN 3D islands were obtained without growth interruption procedure. The introduction of growth interruption would result in a PL blueshift as large as 72 meV. Here quantum-confined Stark effect (QCSE), In composition and size effect of QDs can affect photoluminescence (PL) peak energy and PL full widths at half maximum (FWHM). The Raman measurements revealed that a strong biaxial compressive stress existed in InGaN epilayer since the E2H peak of the sample with InGaN SAQDs showed a large blueshift of 3 cm-1. It should be noted that E2H modes in the Raman spectra are used this purpose because it has been proven particularly sensitive to biaxial stress in GaN epifilms.
Second, it has been demonstrated that the vertical self-organized nanotips were grown on InGaN film via MOVPE and thermal annealing (740C for 20 min). It was found that typical height of these nanotips is 20 nm with an average width of 1 nm. It was also found that the local density of the vertically grown self-assembled InGaN nanotips could reach 1.6×1013 cm-2, height and width of the nanotips both distributed uniformity. The possible formation mechanism of self-assembled nanotips has been also discussed in this work.
Third, the dots-in-a-well (DWELL) structures were applied to nitride-based light-emitting diodes (LEDs). It has been demonstrated that strain-induced InGaN self-assembled quantum dots (QDs) in the well layers of the active region with a typical 3-nm height and 10-nm lateral dimension by high-resolution transmission electron microscopy (HRTEM). Noting that the Bohr radius of InGaN is 3.6 nm, the DWELL strucrture of LED will exhibit obvious quantum effects. With a 20-mA DC injection current, the forward voltage was 3.1 V and 3.5 V for QD LED and conventional multi-quantum well (MQW) LED in the same structure, respectively. It was also found that electroluminescence (EL) peak variation of the LED with DWELL structure is more sensitive to the amount of injection current, as compared with the MQW LEDs.
inally, it has been demonstrated that metal-semiconductor-metal (MSM) photodiodes (PDs) with InGaN SAQDs were fabricated and compared with conventional InGaN MSM photodiodes. The SNOM results revealed such InGaN self-organized nanostructures could have better absorption for the near-field light with the wavelength of 457-514 nm. It was found that the InGaN QD photodiode with lower dark current can operate in the normal incidence mode; we could achieve a much larger photocurrent to dark current contrast ratio from MSM photodiodes with nanoscale InGaN SAQDs. It was also found that the measured responsivity of MSM PDs (PD I with QDs and PD III without QDs) approximated to the same in the range of 390 - 460 nm. Furthermore, PD I showed the higher spectral response than PD III at wavelength < 350 nm and > 480 nm.
Chapter 1
[1] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, Berlin, Germany: Springer-Verlag, 2000.
[2] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys., vol. 76, pp. 8189-8191, 1994.
[3] F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, pp. 351-359, 1997.
[4] I. Akasaki and H. Amano, “Progress and prospect of group-III nitride semiconductors,” J. Cryst. Growth, vol. 175-176, pp. 29-36, 1997.
[5] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, pp. 956-961, 1998.
[6] Y. Narukawa, Y. Kawakami, Sz. Fujita, S. Fujita, and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B, vol. 55, pp. R1938-R1941, 1997.
[7] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, pp. 981-983, 1997.
[8] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and S. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2006-2008, 1998.
[9] K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of Luminescence from InGaN Diodes,” Phys. Rev. Lett., vol. 82, pp. 237-240, 1999.
[10] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., vol. 40, pp. 939-941, 1982.
[11] M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and its threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron., vol. QE-22, pp. 1915-1921, 1986.
[12] A. Yariv, “Scaling laws and minimum threshold currents for quantum-confined semiconductor lasers,” Appl. Phys. Lett., vol. 53, pp. 1033-1035, 1988.
[13] T. Takahahsi and Y. Arakawa, “Theoretical analysis of gain and dynamic properties of quantum well box lasers,” Optoelectron.-Dev. Technol., vol. 3, pp. 155-161, 1988.
[14] Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett., vol. 45, pp. 950-952, 1984.
[15] T. Takahashi and Y. Arakawa, “Nonlinear gain effect in quantum well, wire, and box lasers,” IEEE J. Quantum Electron., vol. 27, pp. 1824-1829, 1991.
[16] D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B, vol. 50, pp. 11 687-11 692, 1994.
[17] P. Chen, Q. Xie, A. Madhukar, L. Chen, and A. Konkar, “Mechanisms of strained island formation in molecular-beam epitaxy of InAs on GaAs (100),” J. Vac. Sci. Technol. B, vol. 12, pp. 2568-2573, 1994.
[18] Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, “Vertically selforganized InAs quantum box islands on GaAs (100),” Phys. Rev. Lett., vol. 75, pp. 2542-2545, 1995.
[19] D. Bimberg, N. Kirxtaedter,N.N. Ledentsov, Zh. I. Alferov, P. S.Kopev, and V. M. Ustinov, “InGaAs-GaAs quantum-dot lasers,” IEEE Select. Topics Quantum Electron., vol. 3, pp. 196-205, 1997.
[20] D. L. Huffaker, G. Park, Z. Zou, O. B. Schekin, and D. G. Deppe, “1.3 μm room-temperature GaAs-based quantum-dot lasers,” Appl. Phys. Lett., vol. 73, pp. 2564-2566, 1998.
[21] M. Sugawara, K. Mukai, and H. Shoji, “Effect of phonon bottleneck on quantum-dot laser performance,” Appl. Phys. Lett., vol. 71, pp. 79-82, 1997.
[22] Y. Arakawa, M. Nishioka, H. Nakayama, and M. Kitamura, “Growth and optical properties of self-assembled quantum dots for semiconductor laser with confined electrons and photons,” IEICE Trans., vol. E-79-C-11, pp. 487-495, 1996.
[23] S. Tanaka, S. Iwai, and Y. Aoyagi, “Self-assembling GaN quantum dots on AlxGa1-xN surfaces using a surfactant,” Appl. Phys. Lett., vol. 69, pp. 4096-4098, 1996.
[24] X. Q. Shen, S. Tanaka, S. Iwai, and Y. Aoyagi, “The formation of GaN dots on AlxGa1-xN surfaces using Si in gas-source molecular beam epitaxy,” Appl. Phys. Lett., vol. 72, pp. 344-346, 1998.
[25] H. Hirayama, S. Tanaka, P. Ramvall, and Y. Aoyagi, “Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces,” Appl. Phys. Lett., vol. 72, pp. 1736-1738, 1998.
[26] B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, and J. L. Rouvière, “Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN,” Phys. Rev. B, vol. 56, pp. R7069-R7072, 1997.
[27] B. Damilano, N. Grandjean, F. Semond, J. Massies, and M. Leroux, “From visible to white light emission by GaN quantum dots on Si (111) substrate,” Appl. Phys. Lett., vol. 75, pp. 962-964, 1999.
[28] C. Adelmann, J. Simon, N. Pelekanos, Y. Samson, G. Feuillet, and B. Daudin, “Growth and optical characterization of InxGa1-xN dots resulting from 2D-3D transition,” in Proc. Ext. Abstr. 3rd Int. Conf. Nitride Semiconductors, 1999, pp. 52-56.
[29] J. Wang, M. Nozaki, M. Lachab, Y. Ishikawa, R. S. Qhalid Fareed, T. Wang, M. Hao, and S. Sakai, “Metalorganic chemical vapor deposition selective growth and characterization of InGaN quantum dots,” Appl. Phys. Lett., vol. 75, pp. 950-952, 1999.
[30] K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dots structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett., vol. 76, pp. 3212-3214, 2000.
[31] S. Tanaka, H. Hirayama, Y. Aoyagi, Y. Narukawa, Y. Kawakami, Sz. Fujita, and Sg. Fujita, “Stimulated emission from optically pumped GaN quantum dots,” Appl. Phys. Lett., vol. 71, pp. 1299-1301, 1997.
[32] K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 383-385, 1999.
[33] K. Tachibana, T. Someya, Y. Arakawa, R. Werner, and A. Forchel, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,” Appl. Phys. Lett., vol. 75, pp. 2605-2607, 1999.
[34] S. Tanaka, J. S. Lee, P. Ramvall, and H. Okagawa, “A UV light-emitting diode incorporating GaN quantum dots,” Jpn. J. Appl. Phy., vol. 42, pp. L885-L887, 2003.
[35] L. W. Ji, Y. K. Su, S. J. Chang, S. H. Liu, C. K. Wang, S. T. Tsai, T. H. Fang, L. W. Wu, and Q. K. Xue, “InGaN quantum dot photodetectors,” Solid State Electron., vol. 47, pp. 1753-1756, 2003.
[36] Y. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu, W. C. Lai, T. H. Fang, and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Technol., vol. 19, pp. 389-392, 2004.
Chapter 2
[1] O. Ambacher, “Growth and applications of III-nitrides,” J. Phys. D, vol. 31, pp. 2653-2710, 1998.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
[3] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, pp. R10024-R10027, 1997.
[4] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, E. Bigan, M. Razeghi, and D. K. Gaskill, “Thermal stability of GaN thin films grown on (0001) Al2O3, Al2O3 and (0001)Si 6H-SiC substrates,” J. Appl. Phys. vol. 76, pp. 236-241, 1994.
[5] F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, “Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers,” Appl. Phys. Lett., vol. 69, pp. 337-339, 1996.
[6] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasasi, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382-L385, 1997.
[7] J. Shi and Z. Gan, “Effects of piezoelectricity and spontaneous polarization on localized excitons in self-formed InGaN quantum dots,” J. Appl. Phys., vol. 94, pp. 407-415, 2003.
[8] D. S. Chemla, T. C. Damen, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Electroabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures,” Appl. Phys. Lett., vol. 42, pp. 864-866, 1983.
[9] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[10] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard and W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, vol. 32, pp. 1043-1060, 1985.
[11] V. Fiorentini, F. Bernardini, F. D. Sala, A. D. Carlo, and P. Lugli, “Effects of macroscopic polarization in III-V nitride multiple quantum wells,” Phys. Rev. B, vol. 60, pp. 8849-885, 1999.
[12] T. Takeuchi, H. Amano, and I. Akasasi, “Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells,” Jpn. J. Appl. Phys., vol. 39, pp. 413-416, 2000.
[13] H. Morkoç, Nitride Semiconductors and Devices, Berlin, Germany: Springer-Verlag, 1999.
Chapter 3
[1] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, pp. 981-983, 1997.
[2] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and S. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2006-2008, 1998.
[3] K. P. O’Donnell, R. W. Martin, and P. G. Middleton, “Origin of Luminescence from InGaN Diodes,” Phys. Rev. Lett., vol. 82, pp. 237-240, 1999.
[4] B. Damilano, N. Grandjean, S. Dalmasso, and J. Massies, “Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth,” Appl. Phys. Lett., vol. 75, pp. 3751-3753, 1999.
[5] K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 383-385, 1999.
[6] C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, B. Daudin, and G. Fishman, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 76, pp. 1570-1572, 2000.
[7] S. Tanaka, S. Iwai, and Y. Aoyagi, “Self-assembling GaN quantum dots on AlxGa1-xN surfaces using a surfactant,” Appl. Phys. Lett., vol. 69, pp. 4096-4098, 1996.
[8] X. Q. Shen, S. Tanaka, S. Iwai, and Y. Aoyagi, “The formation of GaN dots on AlxGa1-xN surfaces using Si in gas-source molecular beam epitaxy,” Appl. Phys. Lett., vol. 72, pp. 344-346, 1998.
[9] H. Hirayama, S. Tanaka, P. Ramvall, and Y. Aoyagi, “Intense photoluminescence from self-assembling InGaN quantum dots artificially fabricated on AlGaN surfaces,” Appl. Phys. Lett., vol. 72, pp. 1736-1738, 1998.
[10] J. Zhang, M. Hao, P. Li, and S. J. Chua, “InGaN self-assembled quantum dots grown by metalorganic chemical-vapor deposition with indium as the antisurfactant,” Appl. Phys. Lett., vol. 80, pp. 485-487, 2002.
[11] H. M. Manasevit, “Single-crystal gallium arsenide on insulating substrates,” Appl. Phys. Lett., vol.12, pp. 156-159, 1968.
[12] H. M. Manasevit, and W. I. Simpson, Electronchem. Soc., vol. 116, pp. 1725-xxxx, 1969.
[13] H. M. Manasevit, and K. L. Hess, J. Electrochem. Soc., vol. 126, pp. 2031-xxx, 1979.
[14] J. S. Yuan, C. C. Hsu, R. M. Cohen, and G. B. Stringfellow, “Organometallic vapor phase epitaxial growth of AlGaInP,” J. Appl. Phys., vo. 57, pp.1380-1383, 1985.
[15] A. Thon, and T. F. Kuech, Mat. Res. Soc., vol. 97, 1996.
[16] G. E. Coates, M. L. H. Green, P. Powell, and K. Wade, Principles of Organometallic Chemistry, Methuen, London, 1968.
[17] T. Matsuoka, N. Yoshimoto, T. Sasaki, and A. Katsui, J. Electron. Mat., vol. 21, pp. 157-xxx, 1992.
[18] J. I. Pankove and T. D. Moustakas, Gallium Nitride I (Semiconductors and Semimetals vol 50), London, UK: Academic, 1998.
[19] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[20] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard and W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, vol. 32, pp. 1043-1060, 1985.
[21] H. Harima, “Properties of GaN and related compounds studied by means of Raman scattering,” J. Phys.: Condens. Matter, vol. 14, pp. R967-R993, 2002.
[22] M. Suzuki and T. Uenoyama, “Strain effect on electronic and optical properties of GaN/AlGaN quantum-well lasers,” J. Appl. Phys., vol. 80, pp. 6868-6874, 1996.
[23] J. I. Pankove and T. D. Moustakas, Gallium Nitride II (Semiconductors and Semimetals vol 57), London, UK: Academic, 1999.
[24] H. Morkoç, Nitride Semiconductors and Devices, Berlin, Germany: Springer-Verlag, 1999.
[25] V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, “Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC,” J. Appl. Phys., vol. 82, pp. 5097-5102, 1997.
[26] C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager, III, E. Jones, Z. Liliental-Weber, M. Rubin, and E. R. Weber M. D. Bremser and R. F. Davis, “Strain-related phenomena in GaN thin films,” Phys. Rev. B, vol. 54, pp. 17745-17753, 1996.
[27] A. Link, K. Bitzer, W. Limmer, R. Sauer, C. Kirchner, V. Schwegler, M. Kamp, D. G. Ebling, and K. W. Benz, “Temperature dependence of the E2 and A1(LO) phonons in GaN and AlN,” J. Appl. Phys., vol. 86, pp. 6256-6260, 1999.
Chapter 4
[1] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys., vol. 76, no. 12, pp. 8189-8191, Dec. 1994.
[2] F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, pp. 351-359, Mar. 1997.
[3] I. Akasaki and H. Amano, “Progress and prospect of group-III nitride semiconductors,” J. Cryst. Growth, vol. 175-176, pp. 29-36, May 1997.
[4] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, pp. 956-961, Aug. 1998.
[5] S. Khalfallah, C. Gorecki, J. Podlecku, M. Nishioka, H. Kawakatsu, and Y. Arakawa, “Wet-etching fabrication of multiplayer GaAlAs/GaAs microtips for scanning near-field optical microscopy,” Appl. Phys. A, vol. 71, pp. 223-225, June 2000.
[6] Y. Terada, H. Yoshida, T. Urushido, H. Miyake, and K. Hiramatsu, “Field emission from GaN self-organized nanotips,” Jpn. J. Appl. Phys., vol. 41, no. 11A, pp. L1194-L1196, Nov. 2002.
[7] S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips,” IEEE Tran. Nanotechnology, vol. 2, no. 1, pp. 50-54, Mar. 2003.
[8] W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction,” Science, vol. 277, pp. 1287-1289, Aug. 1997.
[9] W. Han, P. Redlich, F. Ernst, and M. Rühle, “Synthesis of GaN–carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere,” Appl. Phys. Lett., vol. 76, no. 5, pp. 652-654, Jan. 2000.
[10] H. Yoshida, T. Urushido, H. Miyake, and K. Hiramatsu, “Formation of GaN self-organized nanotips by reactive ion etching,” Jpn. J. Appl. Phys., vol. 40, no. 12A, pp. L1301- L1304, Dec. 2001.
[11] C. C. Tang, S. S. Fang, H. Y. Dang, P. Li, and Y. M. Liu, “Simple and high-yield method for synthesizing single-crystal GaN nanowires,” Appl. Phys. Lett., vol. 77, no. 13, pp. 1961-1963 Sept. 2000.
[12] S. Y. Bae, H. W. Seo, J. Park, H. Yang, H. Kim, and S. Kim, “Triangular gallium nitride nanorods,” Appl. Phys. Lett., vol. 82, no. 25, pp. 4564-4566, June 2003.
[13] L. W. Tu, C. L. Hsiao, T. W. Chi, and I. Lo, “Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 82, no. 10, pp. 1601-1603, Mar. 2003.
[14] S. Tanaka, S. Iwai, and Y. Aoyagi, “Self-assembling GaN quantum dots on AlxGa1–xN surfaces using a surfactant,” Appl. Phys. Lett., vol. 69, no. 26, pp. 4096-4098, Dec. 1996.
[15] K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, no. 3, pp. 383-385, Jan. 1999.
[16] C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, and B. Daudin, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 76, no. 12, pp. 1570-1572, Mar. 2000.
[17] L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, J. F. Chen, T. Y. Tsai, Q, K. Xue, and S. C. Chen, “Growth of nanoscale InGaN self-assembled quantum dots,” J. Cryst. Growth, vol. 249, pp. 144-148, Feb. 2003.
[18] N. Moll, M. Scheffler, and E. Pehlke, “Influence of surface stress on the equilibrium shap of strained quantum dots,” Phys. Rev. B, vol. 58, no. 8, pp. 4566-4571, Aug. 1998.
[19] V. A. Shchukin, D. Bimberg, T. P. Munt, and D. E. Jesson, “Metastability of ultradense arrays of quantum dots,” Phys. Rev. Lett., vol. 90, no.7, 076102, Feb. 2003.
Chapter 5
[1] D. Leonard, M. Krinshnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett., vol. 63, pp. 3203-3205, 1993.
[2] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys., vol. 76, no. 12, pp. 8189-8191, 1994.
[3] F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light-emitting devices,” Nature, vol. 386, pp. 351-359, 1997.
[4] I. Akasaki and H. Amano, “Progress and prospect of group-III nitride semiconductors,” J. Cryst. Growth, vol. 175-176, pp. 29-36, 1997.
[5] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science, vol. 281, pp. 956-961, 1998.
[6] Y K. Su, S. J. Chang, C. H. Ko, J. F. Chen, W. H. Lan, W. J. Lin, Y. T. Cherng, and J. Webb, “InGaN/GaN light emitting diodes with a p-down structure,” IEEE T. Electron. Dev., vol. 49, no. 8, pp. 1361-1366, 2002.
[7] S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen, and J. M. Tsai, “400-nm InGaN-GaN and InGaN-AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel. Top. Quant., vol. 8, no. 4, pp. 744-748, 2002.
[8] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, “InGaN-GaN multiquantum-well blue and green light-emitting diodes,” IEEE J. Sel. Top. Quant., vol. 8, no. 2, pp. 278-283, 2002.
[9] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes,” IEEE J. Quantum Elect., vol. 38, no. 5, pp. 446-450, 2002.
[10] B. Damilano, N. Grandjean, S. Dalmasso, and J. Massies, “Room-temperature blue-green emission from InGaN/GaN quantum dots made by strain-induced islanding growth,” Appl. Phys. Lett., vol. 75, no. 24, pp. 3751-3753, 1999.
[11] K. Tachibana, T. Someya, and Y. Arakawa, “Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, no. 3, pp. 383-385, 1999.
[12] C. Adelmann, J. Simon, G. Feuillet, N. T. Pelekanos, and B. Daudin, “Self-assembled InGaN quantum dots grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 76, no. 12, pp. 1570-1572, 2000.
[13] L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, J. F. Chen, T. Y. Tsai, Q, K. Xue, and S. C. Chen, “Growth of nanoscale InGaN self-assembled quantum dots,” J. Cryst. Growth, vol. 249, pp. 144-148, 2003.
[14] S. Nakamura, K. Kitamura, H. Umeya, A. Jia, M. Kobayashi, A. Yoshikawa, M. Shimotomai, Y. Kato, and K. Takahashi, “Bright electroluminescence from CdS quantum dot LED structures,” Electron. Lett., vol. 34, no. 25, pp. 2435-2436, 1998.
[15] K. Tachibana, T. Someya, and Y. Arakawa, “Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser,” Appl. Phys. Lett., vol. 75, no. 17, pp. 2605-2607, 1999.
[16] K. Tachibana, T. Someya, and Y. Arakawa, “Growth of InGaN self-assembled quantum dots and their application to lasers,” IEEE J. Sel. Top. Quant., vol. 6, no. 3, pp. 475-481, 2000.
[17] S. Tanaka, J. S. Lee, P. Ramvall, and H. Okagawa, “A UV light-emitting diode incorporating GaN quantum dots,” Jpn. J. Appl. Phy., vol. 42, pp. L885-L887, 2003.
[18] P. Ramvall, P. Riblet, S. Nomura, Y. Aoyagi, and S. Tanaka, “Optical properties of GaN quantum dots,” J. Appl. Phys., vol. 87, no. 8, pp. 3883-3890, 2000.
[19] H. Gotoh, H. Ando, and H. Kanbe, “Excitonic optical properties in semiconductor thin quantum boxes of intermediate regime between zero and two dimensions,” Appl. Phys. Lett., vol. 68, no. 15, pp. 2132-2134, 1996.
[20] C. Winnewisser, J. Schneider, M. Börsch and H. W. Rotter, “In situ temperature measurements via ruby R lines of sapphire substrate based InGaN light emitting diodes during operation,” J. Appl. Phys., vol. 89, pp. 3091-3094, 2001.
[21] S. Ruvimov, Z. Liliental-Weber, T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, “Effect of Si doping on the dislocation structure of GaN grown on the A-face of sapphire,” Appl. Phys. Lett., vol. 69, no. 7, pp. 990-992, 1996.
[22] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes with a lifetime of 27 hours,” Appl. Phys. Lett., vol. 70, no. 11, pp. 1417-1419, 1997.
[23] D. S. Chemla, T. C. Damen, D. A. B. Miller, A. C. Gossard, and W. Wiegmann, “Electroabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures,” Appl. Phys. Lett., vol. 42, pp. 864-866, 1983.
[24] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structure: the quantum-confined Stark effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173-2176, 1984.
[25] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard and W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, vol. 32, pp. 1043-1060, 1985.
[26] D. A. B. Miller, D. S. Chemla, and T. C. Damen, “Relation between electroabsorption in bulk semiconductor and in quantum wells: the quantum-confined Franz-Keldysh effect,” Phys. Rev. B, vol. 33, no. 10, pp. 6976-6982, 1986.
[27] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, pp. 981-983, 1997.
Chapter 6
[1] D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors,” J. Appl. Phys., vol. 83, pp. 2142-2146, 1998.
[2] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN,” Appl. Phys. Lett., vol. 75, pp. 247-249, 1999.
[3] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sánchez, and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes,” Appl. Phys. Lett., vol. 74, pp. 1171-1173, 1999.
[4] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett., vol. 71, pp. 2334-2336, 1997.
[5] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, V. Adivarahan, J. Yang, G. Simin, and M. Asif Khan, “Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors,” Appl. Phys. Lett., vol. 79, pp. 866-868, 2001.
[6] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, pp. 762-764, 1999.
[7] H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett., vol. 78, pp. 79-81, 2001.
[8] A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, and Yu. Yu. Proskuryakov, “Interlevel Ge/Si quantum dot infrared photodetector,” J. Appl. Phys., vol. 89, pp. 5676-5681, 2001.
[9] E. Betzig, P. L. Finn, and J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett., vol. 60, pp. 2484-2486, 1992.
[10] L. Chu, M. Arzberger, A. Zrenner, G. Böhm, and G. Abstreiter, “Polarization dependent photocurrent spectroscopy of InAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 75, pp. 2247-2249, 1999.
Chapter 7
[1] L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, J. F. Chen, T. Y. Tsai, Q. K. Xue and S. C. Chen, “Growth of nanoscale InGaN self-assembled quantum dots,” J. Cryst. Growth, vol. 249, pp. 144-148, Feb. 2003.
[2] L. W. Ji, Y. K. Su, S. J. Chang, L. W. Wu, T. H. Fang, Q. K. Xue, W. C. Lai and Y. Z. Chiou, “A novel method to realize InGaN self-assembled quantum dots by metalorganic chemical vapor deposition,” Mater. Lett., vol. 57, pp. 4218-4221, Sep. 2003.
[3] L. W. Ji, Y. K. Su, S. J. Chang, T. H. Fang, T. C. Wen, and S. C. Hung, “Growth of ultra small self-assembled InGaN nanotips,” J. Cryst. Growth, vol. 263, pp. 63-67, Mar. 2004.
[4] Y. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu, W. C. Lai, T. H. Fang and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Tech., vol. 19, no. 3, pp. 389-392, Mar. 2004.
[5] L. W. Ji, Y. K. Su, S. J. Chang, C. S. Chang, L. W. Wu, W. C. Lai, X. L. Du and H. Chen, “InGaN/GaN multi-quantum dot light-emitting diodes,” J. Cryst. Growth, vol. 263, pp. 114-118, Mar. 2004.
[6] L. W. Ji, Y. K. Su, S. J. Chang, S. H. Liu, C. K. Wang, S. T. Tsai, T. H. Fang, L. W. Wu and Q, K. Xue, “InGaN quantum dot photodetectors,” Solid-State Electron., vol. 47, pp. 1753-1756, Oct. 2003.
[7] L. W. Ji, Y. K. Su, S. J. Chang, S. C. Hung, C. K. Wang, T. H. Fang, T. Y. Tsai, R. W. Chuang, W. Su, and J. C. Zhong, “InGaN metal-semiconductor-metal photodiodes with self-assembled quantum dots,” Jpn. J. Appl. Phys., vol. 43, no. 2, pp. 518-521, Feb. 2004.
[8] L. W. Ji, Y. K. Su, S. J. Chang, S. T. Tsai, S. C. Hung, R. W. Chuang, T. H. Fang, and T. Y. Tsai, “Growth of InGaN Self-Assembled Quantum Dots and Their Application to Photodiodes,” J. Vac. Sci. Technol. A, vol. 22, pp. 792-795, May/Jun. 2004.