| 研究生: |
闕壯羽 Chiue, Jung-Yu |
|---|---|
| 論文名稱: |
鐵鈀合金之磁致應變與微結構探討 Investigation of Magnetostriction and Microstructure for Fe-Pd Alloy |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 鐵鈀合金 、鐵磁性形狀記憶合金 、EBSD |
| 外文關鍵詞: | Fe-Pd alloy, ferromagnetic shape memory alloy, EBSD |
| 相關次數: | 點閱:170 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討鐵鈀鐵磁性形狀記憶合金之磁致應變與微結構。使用真空電弧熔煉鑄造方式製備鐵鈀合金,在熔煉爐內通以保護氣氛以電弧將鐵與鈀塊材熔煉成合金,經由退火1000°C 24h、固溶化處理900°C 2h,並由900°C直接淬火等熱處理過程而獲得。以ICP分析鑄錠之成分,DSC分析其麻田散體相變化溫度,並以XRD測量其晶體結構,並以電子背向散射繞射(Electron Back Scattering Diffraction, EBSD)技術分析其晶粒方向分佈,並進行FCT及BCT麻田散體相鑑定,表面形貌以OM、SEM觀察,並藉由VSM量取物理性質,以及DIC(Digital Image Correlation)量測磁致應變。
對於Fe70Pd30及Fe71.5Pd28.5麻田散體,可由結構分析發現分別為FCT麻田散體薄板狀雙晶及BCT麻田散體透鏡狀雙晶之結構,兩者均有晶體取向差沿<100>旋轉90°,並可由相變態分析知FCT為可逆麻田散體,及BCT為不可逆麻田散體,在物理性質上兩者皆為軟磁性質,矯頑磁力均低於20 Oe,但BCT雙晶之磁性質較FCT雙晶磁性質好,在磁致應變中可得Fe70Pd30具最大應變量X方向6×10-4。
The study is focused on the relationship between magnetostriction and microstructure of Fe-Pd alloys. Fe-Pd alloys were produced using a vacuum arc-melting furnace under protective atmosphere. The specimens were obtained by annealing at 1000°C for 24h, homogenizing at 900°C for 2h and quenching directly from 900°C. The chemical compositions of the specimen were measured by ICP. XRD was applied for determination of crystal structures. EBSD (Electron Back Scattering Diffraction) was used to analyze the grain orientation and to distinguish FCT and BCT phases. The temperature of phase transformation was obtained by DSC and OM/SEM was used to observe the morphology. The hysteresis loop was obtained using VSM and DIC (digital image correlation) was applied to determine the magnetostriction during increasing magnetic field.
Fe70Pd30 and Fe71.5Pd28.5 alloys reveal that FCT phase has thin plate martensite and BCT phase has lenticular martensite. These twins of FCT and BCT phases have an angle/axis relation of <100>90°, that is, a 90° rotation angle along the <100> direction. According to results of phase transformation, martensites of FCT phase and BCT phase, which are soft magnetic and the coercivity are under 20 Oe, are reversible and irreversible, respectively. In addition, it is formed that the maximum value of magnetostriction 6×10-4 is obtained in the X direction for Fe70Pd30.
[1]W. F. Brown, Magnetostatic Principles in Ferromagnrtism, North-Holl And, Amsterdam, 1962.
[2]A. H. Morrish, The Physical of magnetism, John Wiley & Sons, New York, 1965.
[3]D. Craik, Magnetism, Principles and Application, John Wiley & Sons, 1995.
[4] B. D. Cullity, “Introduction to Magnetic Materials”, Addison-Wesley, Reading, MA, 1992.
[5]鄭振東, 實用磁性材料,全華科技圖書股份有限公司,臺北, 1999.
[6] E. Clark, in Ferromagnetic Materials , North-Holland Publishing, Amsterdam, 1980.
[7]金重勳等著, 磁性技術手冊, 中華民國磁性技術協會, 新竹, 2002.
[8]L. C. Chang, T. A. Read,” Experimental evidence of relaxation during diffusionness phase change of single crystal beta Au-Cd alloys containin g47.5 atomic percent Cd", Transactions AIME, 139 (1951), p47.
[9] W. J. Buehler, J. V. Gilfrich and R. C. Wiley,” Shape-memory effect in Ni-Ti alloys”, Journal of Applied Physics, 34 (1963), p1457.
[10] H. Fischer, B. Vogel, A. Gruenhagen, K.P. Brhel, M. Kaiser,” Applications of Shape-Memory Alloys in Medical Instruments”, Trans Tech Publications Inc. Publishers in Science and Engineering, 13(2004), p248.
[11] J. Jafari, S.M. Zebarjad, S.A. Sajjadi, “Effect of pre-strain on microstructure of Ni–Ti orthodontic archwires”, Materials Science and Engineering A,473(2008), p42.
[12] Yunxiang Tong, Yong Liu, “Effect of precipitation on two-way shape memory effect of melt-spun Ti50Ni25Cu25 ribbon”, Materials Chemisty and Physics,120(2010),p221.
[13] M. Nishida, C.M. Wayman, and T. Honma, “Precipitation Processes in Near-Equiatomic TiNi Shape Memory Alloys”, Metallurgical Transactions A, 17A(1986), p1505.
[14] Y. Liu et al., “Some results on the detwinning process in NiTi shape memory alloys”, Scripta Materialia, 41(1999), p1273
[15] T. Sohmura, R. Oshima and F.E. Fujita, “Thermoelastic FCC-FCT Martensitic-Transformation in Fe-Pd Alloy“, Scripta Metallurgica, 14(1980), p855.
[16] P.G. Webster, K.R.A. Ziebeck, S.L. Town, M.S. Peak, “Magnetic order and phase transformation in Ni2MnGa”, Philosophical Magazine, B49 (1984),p 295.
[17] T. Sakamoto, T. Fukuda, T. Kakeshita, T. Takeuchi and K. Kishio,” Giant magnetic field-induced strain due to r ear rangement of variants in an ordered Fe3Pt”, Science and Technol ogy of Advanced Materials, 5 (2004), p35.
[18] A. Fujita,K. Fukamichi ,F. Gejima ,R. Kainuma ,K. Ishida, ” Magnet ic properties and large magnetic-field-induced strains in off-stoichiom etric Ni–Mn–Al Heusler alloys”, Apply Physics Letters, 77 (2000), p3054.
[19]K. Oikawa ,L. Wulff ,T. Iijima ,F. Gejima ,T. Ohmori ,A. Fujita , I. K. Fukam,R. Kainuma ,K. Ishida ,” Promising ferromagnetic Ni–C o–Al shape memory alloy system”, Apply Physics Letters, 79 (2001), p3290.
[20] K. Oikawa,T. Ota ,T. Ohmori ,Y. Tanaka ,H. Morito ,A. Fujita , ” Magnetic and martensitic phase transitions in ferromagnetic Ni-Ga -Fe shape memory alloys”, Apply Physics Letters,81 (2002) p5201.
[21] H. Sehitoglu, I. Karaman, X.Y. Zhang, Y. Chumlyakov and H.J. Maier,” deformation of FeNiCoTi shape memory single crystals”, Scripta Materialia, 44 (2001), p779.
[22] W. Ito, K. Ito, R. Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, and T. Kanomata ,” Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy”, Apply Physics Letters, 92 (2008), P90.
[23] T. Okazaki, T. Ueno, Y. Furuya, M. Spearing, N.W. Hagood, “Detectability of stress-induced martensite phase inferromagnetic shape memory alloy Fe–30.2at.%Pd by Barkhaus en noise method”, Acta Materialia, 52 (2004), p5169
[24] K. U. llakko, J.K. Huang, V. V. Kokorin, R. C. O'handley,” magnetic alloy controlled shape memory effect in Ni2MnGa intermetallics”, Scripta Materialia, 36 (1997), p1133.
[25] K. Ullakko, “Magnetically controlled shape memory alloys: A new class of actuator materials“, Joural of Materials Engineering and Performance, 5 (1996), p405.
[26] J. Cui, T.W. Shield, R.D. James, “Phase transformation and magnetic anisotropy of an iron–palladium ferromagnetic shape -memory alloy”, Acta Materialia, 52(2004), p35.
[27] K. Ehara, H. Tanaka, Y. Kanno, “Evaluation of ferromagnetic shape -memory alloys by the extended Hurckel method”, IEEJ Transactions on Electrical and Electronic Engineering , 2(2007), p313.
[28] I. Suorsa, “Voltage generation induced by mechanical straining in magnetic shape memory materials”, Journal of Applied Physics, 95(2004), p8044.
[29] R. Oshima, “Successive martensitic transformations in Fe-Pd alloys” , Scripta Metallurgical, 15 (1981), p829.
[30] M. Sugiyama, R. Oshima, and E E. Fujita, “Martensitic transformation in the Fe-Pd alloy system” , Transactions of the Japan Institute of Metals, 25 (1984), p585.
[31] V. Recarte, C. Go’mez-Polo, V. Sa’nchez-Ala’rcos, J.I. Pe’rez-Land aza’bal, “Magnetic study of the martensitic transformation in a Fe– Pd alloy”, Journal of Magnetism and Magnetic Materials, 316 (2007), p614.
[32] V. S´anchez-Alarcos, V. Recarte, J.I. P´erez-Landaz´abal, C. G´omez-Polo, V.A. Chernenko,and M.A. Gonz´alez, “Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys”, European Physical Journal Special Topics, 158 (2008), p107.
[33] T. Wada, Y. Liang, H. Kato, T. Tagawa, M. Taya, T. Mori, “ Structu ral change and straining in Fe–Pd polycrystals by magnetic field”, Materials Science and Engineering A, 361 (2003), p75.
[34] T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, “Magnetic field-induced reversible variant rearrangement in Fe–Pd single crystals”, Acta Materialia, 52 (2004), p5083.
[35] R. A. Stern, S. D. Willoughby, A. Ramirez, and J. M. MacLaren and J. Cui, Q. Pan, and R. D. James, “Electronic and structural properties of Fe3Pd–Pt ferromagnetic shape memory alloys”, Journal of Applied Physics, 91(2002), p7818.
[36]Z. Wang, T. Injima, G. He, K. Oikawa, L. Wulff, N Sanada, Y. Furuy a, “Preparation of sputter deposite Fe-Pd thin films” , Material Transactions, JIM, 14(2000), p1139.
[37] S. Inoue, K. Inoue, K. Koterazawa, K. Mizuuchi, “Shape memory behavior of Fe-Pd alloy thin films prepared by dc magnetron sputtering”, Materials Science and Engineering A, 339 (2003), p29.
[38] J. Buschbeck,O. Heczko, A. Ludwig, S. Fähler, and L. Schultz, “ Magnetic properties of epitaxial Fe–Pd films measured at elevated temperatures”, Journal of Applied Physics, 103(2008), p334 .
[39] X.N. Sun, X.Y. Xu, Z.B. Tang, G.S. Dong, and X.F. Jin, “Structure and magnetic properties of FexPd1−x thin films”, Physics Letters A, 372 (2008), p1687.
[40] F. Wang, S. Doi, K. Hosoiri, H. Yoshida, T. Kuzushima, M. Sasadai ra, T. Watanabe, “Nanostructured Fe–Pd thin films for thermoelastic shape memory alloys—electrochemical preparation and characterization”, Electrochimica Acta , 51(2006), p4250.
[41] T. Kubota, T. Okazaki, Y. Furuya, T. Watanabe, “Large Magnetostriction in rapid-solidified Ferromagnetic shape memory Fe–Pd alloy”, Journal of Magnetism and Magnetic Materials, 239(2002), p551.
[42] H. Kato, Y. Liang, M. Taya, ” Stress-induced FCC/FCT phase transformationin Fe–Pd alloy”, Scripta Materialia, 46(2002), p471.
[43] R.D. James and M. Wuttig, “Magnetostriction of Martensite”, Philosop phical Magazine A 77(1998), p1273.
[44] H.Y. Yasuda, N. Komoto, M. Ueda and Y. Umakoshi, “ Microstructure Control for Developing Fe-Pd Ferromagnetic Shape Memory Alloys, Science and Technology of Advanced Materials, 3(2002), p165.
[45] S. Inoue, K. Inoue, S. Fujita, and K. Koterazawa, “Fe–Pd ferromagnetic shape memory alloy thin films made by dual source DC magnetron Sputtering”, Materials Transactions, 44(2003), p298.
[46] Y. Furuya, N. W. Hagood, H. Kimura, T. Watanabe, “Shape memory effect and magnetostriction in rapidly solidified Fe-29.6 at %Pd alloy “, Materials Transactions JIM, 39(1998), p1248.
[47]D. Vokoun, C.T. Hu, “Two-way shape memory effect in Fe-28.8at.% Pd melt-spun ribbons”, Scripta Materialia, 47(2002), p453.
[48] T. Yamamoto, M. Taya, Y. Sutou, Y. Liang, T. Wada, L. Sorensen, “ Magnetic field-induced reversible variant rearrangement in Fe–Pd sin gle crystals”, Acta Materialia, 52(2004), p5083.
[49] H. Kato, T. Wada, Y. Liang, T. Tagawa, M. Taya, T. Mori, “ Martensite structure in polycrystalline Fe–Pd”, Materials Science and Engineering A, 332(2002), p134.
[50] T. Wada, T. Tagawa, M. Taya, “Martensitic transform atio n in Pd- rich Fe–Pd–Pt alloy”, Scripta Materialia,48(2003), p207.
[51] J.J. Felten, T.J. Kinkus, A.C.E. Reid, J.B. Cohen, and G.B. Olson, “ Solid-solution structure and the weakly first-order displacive transformation in Fe-Pd Alloys”, Metallurgical and MaterialsTransactions A, 28(1997), p527.
[52] M. Sugiyama, R.Oshima and F.E. Fujita, “Mechanism of FCC-FCT thermoelastic martensite-transformation in Fe-Pd Alloys”, Transactions of the Japan Institute of Metals, 27(1986), p719.
[53] V. Sa’nchez-Alarcos, V. Recarte, J.I. Pe’rez-Landaza’bal, M.A. Gonza’lez, J.A. Rodrı’guez-Velamaza’n, “Effect of Mn addition on the structural and magnetic properties of Fe–Pd ferromagnetic shape memory alloys, Acta Materialia 57(2009), p4224.
[54] S. U. Jen, Y. T. Chen, T. L. Tsai, and Y. C. Lin, “Magnetostrictive strains in polycrystalline FePdRh alloy”, Journal of Applied Physics, 103(2008), p92.
[55] 陳仲豪, 鐵鈀鋁磁性合金之顯微結構與磁性之探討分析, 高雄 應用科技大學碩士論文, 2009.
[56] 吳立偉, FePdIn鐵磁性形狀記憶合金之研究, 清華大學碩士論文, 2009.
[57] 余俊彥,Fe-Pd鐵磁性形狀記憶合金添加Pt及Au對磁伸縮及形狀記憶性質影響之研究, 清華大學碩士論文, 2005.
[58] Adam J et al., “Electron Backscattering Diffraction in Materials Scie Nce”, Kluwer Academic/Plenum Publusher, New York, 2002.
[59] 蘇勢方, 鎂基材料電子束銲接之冶金特性與織構研究, 中山大學碩士論文, 2001.
[60] D. Vokoun, T. Goryczka, and C. T. Hu.” Textural and shape memory characteristics of Fe–29.9 at.% Pd melt-spun ribbons”, Smart Material Structure, 12(2003), p242.