簡易檢索 / 詳目顯示

研究生: 姜佳宜
Chiang, Chia-Yi
論文名稱: 探討亞硝基醇的衍生性並提出新的磷酸酯合成方法
The Investigation on the Derivatives of O-Nitroso Alcohol and a New Method to Synthesize Phosphate Ester Compounds.
指導教授: 周鶴軒
Chou, Ho-Hsuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 重氮化合物磷酸酯O-亞硝基醇偶合反應
外文關鍵詞: Diazo compounds, Phosphate ester, O-Nitroso alcohol, Coupling
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對O-亞硝基醇 (RONOs) 的衍生反應性進行探討。我們實驗室曾對S-亞硝基硫醇 (RSNOs) 的共軛反應進行一系列的研究,而本論文則欲探討藉相同的反應試劑及條件,對同樣具亞硝基官能基的RONO做反應,藉以比較兩者反應後產物的差別,期望未來能對兩者直接在生物體內進行區別及定量檢測。我們利用RONO和重氮甲基磷酸二甲酯 (Dimethyl (diazomethyl)phosphonate , DAMP) 進行偶合反應可得到磷酸二甲酯化合物,並推測該反應涉及O-亞硝基醇與去質子化的重氮甲基磷酸二甲酯進行親核性加成步驟,再經歷脫除氮氣和二甲基磷酸鉀及重排等過程,推測可得到中間體氰酸酯化合物 (ROCN) ,最後其受二甲基磷酸負離子的攻擊後再脫去氰酸根離子,形成穩定的磷酸二甲酯化合物。
    除了能轉換O-亞硝基醇外,在過往文獻中合成磷酸酯產物大多數是使用醇類及氯磷酸酯進行親核加成反應而獲得,但氯磷酸酯若經由皮膚吸收則具有相當高的毒性,在某些文獻中,甚至還需要使用金屬催化來進行反應;有別於以往的合成路徑,我們意外獲得一個嶄新的合成方法,利用相對穩定且低毒性的重氮甲基磷酸二甲酯和叔丁醇鉀反應,得到DAMP陰離子後,再和RONO進行偶合反應可獲得相對應的磷酸酯產物,此反應的官能基容忍度也不錯,無論是卞基上包含推電子基或拉電子基都有不錯的產率。
    最後,我們也致力於將此方法應用在生物相關的絲胺酸(Serine)及蘇胺酸(Threonine)的亞硝基氨基酸衍生物上,在使用相同試劑下可得到不同的產物,期望未來能藉此區別RSNO和RONO,並可同時進行檢測及定量。

    This research focused on transformation and the reactivity of O-Nitroso alcohols (RONOs). The coupling reaction was carried out with sensitive RONOs and dimethyl (diazomethyl) phosphonate (DAMP) to afford dimethyl phosphate compounds through the putative cyanate intermediates. In the past, our laboratory had also developed a novel ligation of S-Nitrosothiols (RSNOs). By parallel comparing the different products between RONOs and RSNOs, the investigation is expected to directly distinguish and quantify RONOs and RSNOs in the biological field.
    Furthermore, dimethyl chlorophosphate have been commonly used for constructing organophosphate compounds, but due to high toxicity as a cholinesterase inhibitor and tend to hydrolysis under moisture, we provided another new methodology for the synthesis of phosphate ester compounds without acquiring metal catalysts or chlorine reagents.
    We also applied the method onto the nitroso-serine (Ser-ONO) and nitroso-threonine (Thr-ONO) and hope could distinguish between RSNOs and RONOs according to the same reagent in the future.

    摘要 I ABSTRACT III 謝誌 VII 圖目錄 X 表目錄 XI 流程目錄 XII 試劑名稱與縮寫對照表 XIV 第一章 緒論 1 1-1.O-亞硝基醇 (O-Nitroso alcohol,RONO) 1 1-2.O-亞硝基醇的穩定性與檢測方法 2 1-3.重氮化合物 (Diazo compounds) 5 1-4.Seyferth-Gilbert Reagent (SGR) 10 1-5.Bestmann-Ohira Reagent (BOR) 12 1-6.有機磷化合物 (Organophosphorus compounds) 13 1-7.研究動機 (Motivation) 15 第二章 結果與討論 20 2-1.O-亞硝基醇合成反應 20 2-2.磷酸酯合成反應 28 2-3.一級O-亞硝基醇之反應探討與應用 34 2-4.二級O-亞硝基醇之反應探討與應用 44 2-5.胺基酸之O-亞硝基醇的取代反應 47 第三章 結論 52 第四章 實驗部分 54 4-1.實驗藥品及儀器 54 4-2.合成重氮甲基磷酸二甲酯 (DAMP) 55 4-3.O-亞硝基醇 (RONO) 之合成 57 4-4.磷酸酯 (Phosphate ester)之合成 66 4-5.胺基酸修飾及後續衍生反應 76 第五章 參考文獻 78 第六章 附錄 82

    [1] Bechtold, E.; King, S. B., Chemical methods for the direct detection and labeling of S-nitrosothiols. Antioxid. Redox Signal. 2012, 17 (7), 981-991.
    [2] Hussain, A.; Yun, B. W.; Loake, G. J., Nitric Oxide Analyzer Quantification of Plant S-Nitrosothiols. Methods Mol. Biol. 2018, 1747, 223-230.
    [3] Hess, D. T.; Matsumoto, A.; Kim, S. O.; Marshall, H. E.; Stamler, J. S., Protein S-nitrosylation: purview and parameters. Nat. Rev. Mol. Cell Biol. 2005, 6 (2), 150-166.
    [4] Castiglione, N.; Rinaldo, S.; Giardina, G.; Stelitano, V.; Cutruzzola, F., Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid. Redox Signal. 2012, 17 (4), 684-716.
    [5] Cha, H. J.; Kim, Y. J.; Jeon, S. Y.; Kim, Y. H.; Shin, J.; Yun, J.; Han, K.; Park, H. K.; Kim, H. S., Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination. Neurosci. Lett. 2016, 619, 79-85.
    [6] Lautner, G.; Stringer, B.; Brisbois, E. J.; Meyerhoff, M. E.; Schwendeman, S. P., Controlled light-induced gas phase nitric oxide release from S-nitrosothiol-doped silicone rubber films. Nitric Oxide 2019, 86, 31-37.
    [7] Jeon, S. Y.; Kim, Y. J.; Kim, Y. H.; Shin, J.; Yun, J.; Han, K.; Park, H. K.; Kim, H. S.; Cha, H. J., Abuse potential and dopaminergic effect of alkyl nitrites. Neurosci. Lett. 2016, 629, 68-72.
    [8] Sevil Kurban, İ. M., The Effect of Alcohol on Total Antioxidant Activity and Nitric Oxide Levels in the Sera and Brains of Rats. Turk J Med Sci 2008, 38 (3), 199-204
    [9] Li, X.-H.; Tang, Z.-X.; Jalbout, A. F.; Zhang, X.-Z.; Cheng, X.-L., A DFT study of bond dissociation energies of several alkyl nitrate and nitrite compounds. J. Mol. Struct. 2008, 854 (1-3), 76-80.
    [10] (a) Kornblum, N.; Oliveto, E. P., The Mechanism of the Thermal Decomposition of Alkyl Nitrites in the Liquid Phase: the Pyrolysis of Optically Active 2-Octyl Nitrite. J. Am. Chem. Soc. 1949, 71 (1), 226-228; (b) EVANS, A. L. J. B. a. G. W., Reactions of Alkoxy-radicals. Part III. Formation of Esters from Alkyl Nitrites. . J. Chem. Soc. 1962, 130-137.
    [11] Ungnade, H. E.; Smiley, R. A., Ultraviolet Absorption Spectra of Nitroparaffins, Alkyl Nitrates, and Alkyl Nitrites. J. Org. Chem. 1956, 21 (9), 993-996.
    [12] Basu, S.; Wang, X.; Gladwin, M. T.; Kim‐Shapiro, D. B., Chemiluminescent Detection of S‐Nitrosated Proteins: Comparison of Tri‐iodide, Copper/CO/Cysteine, and Modified Copper/Cysteine Methods. Methods Enzymol. 2008, 137-156.
    [13] Kishikawa, N.; Kondo, N.; Amponsaa-Karikari, A.; Kodamatani, H.; Ohyama, K.; Nakashima, K.; Yamazaki, S.; Kuroda, N., Rapid determination of isoamyl nitrite in pharmaceutical preparations by flow injection analysis with on-line UV irradiation and luminol chemiluminescence detection. Luminescence 2014, 29 (1), 8-12.
    [14] Wang, Q. H.; Yu, L. J.; Liu, Y.; Lin, L.; Lu, R. G.; Zhu, J. P.; He, L.; Lu, Z. L., Methods for the detection and determination of nitrite and nitrate: A review. Talanta 2017, 165, 709-720.
    [15] HUISGEN, P. D. R., Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angew. Chem. Int. Ed. 1963, 2, 633-696.
    [16] Zhang, Y.; Wang, J., Recent development of reactions with alpha-diazocarbonyl compounds as nucleophiles. Chem. Commun. (Camb.) 2009, (36), 5350-61.
    [17] Fulton, J. R.; Aggarwal, V. K.; de Vicente, J., The Use of Tosylhydrazone Salts as a Safe Alternative for Handling Diazo Compounds and Their Applications in Organic Synthesis. Eur. J. Org. Chem. 2005, (8), 1479-1492.
    [18] Aronoff, M. R.; Gold, B.; Raines, R. T., 1,3-Dipolar Cycloadditions of Diazo Compounds in the Presence of Azides. Org. Lett. 2016, 18 (7), 1538-41.
    [19] HUISGEN, R., 1,3-Dipolar Cycloadditions Proc. Chem. Soc. 1961 357-396.
    [20] Shershnev, I.; Dar'in, D.; Chuprun, S.; Kantin, G.; Bakulina, O.; Krasavin, M., The use of ∝-diazo-γ-butyrolactone in the Büchner-Curtius-Schlotterbeck reaction of cyclic ketones: A facile entry into spirocyclic scaffolds. Tetrahedron Lett. 2019, 60 (27), 1800-1802.
    [21] (a) McKervey*, T. Y. a. M. A., Organic Synthesis with a-Diazocarbonyl Compounds. Chem. Rev. 1994, 94, 1091-1160; (b) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A., Modern Organic Synthesis with alpha-Diazocarbonyl Compounds. Chem. Rev. 2015, 115 (18), 9981-10080.
    [22] Marinozzi, M.; Pertusati, F.; Serpi, M., lambda(5)-Phosphorus-Containing alpha-Diazo Compounds: A Valuable Tool for Accessing Phosphorus-Functionalized Molecules. Chem. Rev. 2016, 116 (22), 13991-14055.
    [23] Pramanik, M. M.; Chaturvedi, A. K.; Rastogi, N., Substituent controlled reactivity switch: selective synthesis of alpha-diazoalkylphosphonates or vinylphosphonates via nucleophilic substitution of alkyl bromides with Bestmann-Ohira reagent. Chem. Commun. (Camb.) 2014, 50 (85), 12896-8.
    [24] Kirmse, W., 100 Years of the Wolff Rearrangement. Eur.J.Org.Chem. 2002, 2193-2256.
    [25] Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V., Catalytic Cyclopropanation of Alkenes Using Diazo Compounds Generated in Situ. A Novel Route to 2-Arylcyclopropylamines. Org. Lett. 2001, 3 (17), 2785-2788.
    [26] Zhang, Z.; Wang, J., Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron 2008, 64 (28), 6577-6605.
    [27] Marmor, D. S. a. R. S., Dimethyl Diazomethylphosphonate : Its Preparation and Reactions. Tetrahedron Lett. 1970, 28, 2493-2496.
    [28] Hamill, E. W. C. a. B. J., A Simple Procedure for the Elaboration of Carbonyl Compounds into Homologous Alkynes J.C.S. Perkin I 1977, 0, 869-874.
    [29] Gilbert, J. C.; Weerasooriya, U., Elaboration of aldehydes and ketones to alkynes: improved methodology. J. Org. Chem. 1979, 44 (26), 4997-4998.
    [30] Habrant, D.; Rauhala, V.; Koskinen, A. M., Conversion of carbonyl compounds to alkynes: general overview and recent developments. Chem. Soc. Rev. 2010, 39 (6), 2007-17.
    [31] Ohira, S., Methanolysis of Dimethyl (1-Diazo-2-oxopropyl) Phosphonate: Generation of Dimethyl (Diazomethyl) Phosphonate and Reaction with Carbonyl Compounds. Synth. Commun. 1989, 19 (3-4), 561-564.
    [32] Pramanik, M. M. D.; Kant, R.; Rastogi, N., Synthesis of 3-carbonyl pyrazole-5-phosphonates via 1,3-dipolar cycloaddition of Bestmann–Ohira reagent with ynones. Tetrahedron 2014, 70 (34), 5214-5220.
    [33] S. Müller, B. L., G. J. Roth, H. J. Bestmann, An Improved One-pot Procedure for the Synthesis of Alkynes from Aldehydes. Synlett 1996, 521-522.
    [34] Horiguchi, M. K., M., Isolation of 2-Aminoethane Phosphonic Acid from Rumen Protozoa Nature 1959, 184, 901-902.
    [35] Ju, K. S.; Doroghazi, J. R.; Metcalf, W. W., Genomics-enabled discovery of phosphonate natural products and their biosynthetic pathways. J. Ind. Microbiol. Biotechnol. 2014, 41 (2), 345-56.
    [36] Shimanouchi, T.; Kitagawa, Y.; Kimura, Y., Application of liposome membrane as the reaction field: A case study using the Horner-Wadsworth-Emmons reaction. J. Biosci. Bioeng. 2019.
    [37] Knochel, C. C. K. a. P., Synthesis of Functionalized Diarylmethanes via a Copper-Catalyzed Cross-Coupling of Arylmagnesium Reagents with Benzylic Phosphates. Org. Lett. 2006, 8 (18), 4121-4124.
    [38] Pittelkow, M.; Christensen, J. B.; Solling, T. I., Substituent effects on the stability of extended benzylic carbocations: a computational study of conjugation. Org. Biomol. Chem. 2005, 3 (13), 2441-9.
    [39] (a) Akbarzadeh, S.; Setamdideh, D.; Hedayati, M., NaBH4/(NH4)2SO4: A Convenient System for Reduction of Carbonyl Compounds to their Corresponding Alcohols in wet-THF. Oriental Journal of Chemistry 2014, 30 (4), 1989-1992; (b) SAUL, W. C. a. W. G. B., Reduction of Aldehydes, Ketones and Acid Chlorides by Sodium Borohydride J. Am. Chem. Soc. 1949, 71 (1), 122-125; (c) Naimi-Jamal, M. R.; Mokhtari, J.; Dekamin, M. G.; Kaupp, G., Sodium Tetraalkoxyborates: Intermediates for the Quantitative Reduction of Aldehydes and Ketones to Alcohols through Ball Milling with NaBH4. Eur. J. Org. Chem. 2009, 2009 (21), 3567-3572.
    [40] Yutaka Watanabe, E. I., Maaanao Jinno, and Shoichiro Ozaki Phosphonium Salt Methodology for the Synthesis of Phosphoric Monoesters and Diesters and its Application to Selective Phosphorylation Tetrahedron Lett. 1993, 34 (3), 497-500.
    [41] Kirby, A. J.; Souza, B. S.; Nome, F., Structure and reactivity of phosphate diesters. Dependence on the nonleaving group. Can. J. Chem. 2015, 93 (4), 422-427.
    [42] Thompson, C. M.; Frick, J. A.; Green, D. L. C., Synthesis, configuration, and chemical shift correlations of chiral 1,3,2-oxazaphospholidin-2-ones derived from l-serine. J. Org. Chem. 1990, 55 (1), 111-116.
    [43] Kelly, G. T.; Sharma, V.; Watanabe, C. M., An improved method for culturing Streptomyces sahachiroi: biosynthetic origin of the enol fragment of azinomycin B. Bioorg. Chem. 2008, 36 (1), 4-15.
    [44] Paul Lloyd-Williams, A. S. n., Natalia Carulla, Teresa Ochoa and Ernest Giralt, Synthetic Studies on Threonines. The Preparation of Protected Derivatives of D-allo- and L-allo-Threonine for Peptide Synthesis. Tetrahedron 1997, 53 (9), 3369-3382.

    無法下載圖示 校內:2024-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE