簡易檢索 / 詳目顯示

研究生: 陳羿樺
Chen, Yi-Hua
論文名稱: 含缺陷阿基米德晶格聲子晶體散射行為之分析
Analysis of scattering behavior in the cavity of phononic crystals with Archimedean tilings
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 70
中文關鍵詞: 聲子晶體阿基米德晶格
外文關鍵詞: phononic crystals, Archimedean tilings
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聲子晶體是由兩種或兩種以上不同的彈性材料或流體週期排列而形成的結構,此人造結構會使得某些頻率或是某些特定入射角度之聲波或彈性波被禁止傳遞通過此週期性結構,產生能隙現象。當完美的週期性結構被破壞,若移除單一聲子晶體填充物產聲點缺陷可形成共振腔,或是移除整排聲子晶體填充物產生線缺陷可形成波導,此時將會在能隙範圍內產生缺線模態,在缺陷模態的頻率之下,能夠將聲波或彈性波侷限在聲子晶體之缺陷中,缺陷模態所對應的頻帶即為缺陷頻帶,此種特性可應用於濾波器,或是各種隔音裝置上。三角晶格與正方晶格是聲子晶體常見的晶格排列方式,阿基米德晶格則是由一種以上的正多邊形來排列成整個平面,並且沒有產生任何縫隙,此種晶格可以達到傳統晶格所無法達成的旋轉對稱性。
    本文使用平面波展開法以及有限元素法求得聲子晶體之色散曲線,進而結合超晶胞法計算阿基米德晶格之色散曲線以及含缺陷聲子晶體之色散曲線,並且探討在三角晶格與阿基米德晶格下色散曲線之差異,也分析共振模態之壓力場與品質因子。在阿基米德晶格聲子晶體之共振腔中排放不同層數的聲子晶體填充物,觀察其壓力場與共振頻率的變化,並且改變填充物的半徑大小,以了解此變化是否會影響壓力場以及品質因子。

    We considered phononic crystals with Archimedean tilings and triangular lattice arrangement, which were consisted of PMMA cylinders in the air background. The number of band gap for phononic crystal with Archimedean tilings is more than that with triangular lattice arrangement within frequency of 0-10000Hz. In the defect of phononic crystals with Archimedean tilings, we observed whispering-gallery-mode of resonance, which can promote the quality factor. We put different radius of scattering inclusions to form a smaller circle in the cavity to tune the resonant frequencies. On the other hand, we put a hollow cylinder scattering inclusion in the cavity makes quality factor be enhanced.

    摘要 I Analysis of scattering behavior in the cavity of phononic crystals with Archimedean tilings II 誌謝 VII 目錄 VIII 圖目錄 X 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 1 1-2-1 聲子晶體 2 1-2-2含缺陷聲子晶體 3 1-2-3迴音廊模態 4 1-2-4阿基米德晶格 5 1-3本文架構 5 第二章 數值方法 8 2-1倒晶格空間與布里淵區(Brillouin Zones) 8 2-2布洛赫定理(Bloch theorem) 9 2-3平面波展開法 10 2-3-1正方晶格排列 13 2-3-2三角晶格排列 14 2-3-3超晶胞法 15 2-4有限元素法 16 2-5 聲子晶體共振腔品質因子 20 第三章 聲子晶體之色散曲線與缺陷模態 25 3-1三角晶格聲子晶體 25 3-1-1 色散曲線 26 3-1-2 缺陷模態 26 3-2 阿基米德晶格聲子晶體 27 3-2-1色散曲線 27 3-2-2缺陷模態 27 3-2-3 填充比與色散曲線之關係 28 第四章 阿基米德晶格聲子晶體共振腔之調變 41 4-1 多層圓柱排列之共振腔 41 4-2 共振腔中央填充空心圓柱 42 4-3 波導耦合進共振腔 44 第五章 綜合結論與未來展望 62 5-1 綜合結論 62 5-2 未來展望 63 參考文獻 64

    [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. Vol. 58, No. 20, pp. 2059-2062 (1987)
    [2] S. John, “Strong localization of photons in certain disordered dielectric super-lattices,” Phys. Rev. Lett. Vol. 58, No. 23, pp. 2486-2489 (1987)
    [3] L. Brillouin, “Wave propagation in periodic structures,” 2nd ed. Dover, New York (1953)
    [4] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett. Vol. 71, No. 13, pp. 2022-2025 (1993)
    [5] M. S. Kushwaha, “Classical band structure of periodic elastic composites,” Int. J. Mod. Phys. B Vol. 10, No. 9, pp. 977-1094 (1996)
    [6] M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites,” Appl. Phys. Lett. Vol. 64, No. 9, pp. 1085-1087 (1994)
    [7] M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B. Vol. 49, No. 4, pp. 2313-2322 (1994)
    [8] M. S. Kushwaha, P. Halevi, “Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders,” Appl. Phys. Lett. Vol. 69, No. 1, pp. 31-33 (1996)
    [9] M. S. Kushwaha, “Stop-bands for periodic metallic rods: Sculptures that can filter the noise,” Appl. Phys. Lett. Vol. 70, No. 24, pp. 3218-3220 (1997)
    [10] M. S. Kushwaha, and B. Djafrari-Rouhani, “Giant sonic stop band in two-dimensional periodic system of fluids, ” J. Appl. Phys. Vol. 84, No. 9, pp. 4677-4683 (1998)
    [11] Y. Cao, Z. Hou and Y. Liu, “Finite difference time domain method for band structure calculations of two-dimensional Phononic crystals,” Solid State Commun. Vol. 132, No. 8, pp. 539-543 (2004)
    [12] R. Esquivel-Sirvent and G. H. Cocoletzi, “Band structure for the propagation of elastic waves in superlattice,” J. Acoust. Soc. Am. Vol. 95, No. 1, pp. 86-90 (1994)
    [13] A. Baz, “Active control of periodic structures,” J. Vib. Acous. Vol. 123, No. 4, pp. 472-479 (2001)
    [14] S. Solaroli, Z. Gu, A. Baz, and M. Ruzzene, “Wave propagation in periodic stiffened shells: spectral finite element modeling and experiments,” J. Vib. Control Vol. 9, No. 9, pp. 1057-1081 (2003)
    [15] T. N. Tongele and T. Chen, “Control of longitudinal wave propagation in conical periodic structures,” J. Vib. Control Vol. 10, No. 12, pp. 1795-1811 (2004)
    [16] P. Langlet, A. C. Hladky-Hennion and J. N. Decarpigny, “Analysis of the propagation of plane acoustic wave in passive periodic materials using the finite element method,” J. Acoust. Soc. Am. Vol. 98, No. 8, pp. 2792-2800 (1995)
    [17] M. Åberg and P. Gudmundson, “The usage of standard finite element codes for computation of dispersion relations in material with periodic microstructure,” J. Acoust. Soc. Am. Vol. 102, No. 4, pp. 2007-2013 (1997)
    [18] M. Kafesaki and E. N. Economou, “Multiple-scattering theory for three-dimensional periodic acoustic composites,” Phys. Rev. B Vol. 60, No. 17, pp. 11993-12001 (1999)
    [19] Z. Liu, C. T. Chan, P. Sheng, A. L. Goertzen and J. H. Page, “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment,” Phys. Rev. B Vol. 62, No. 4, pp. 2446-2457 (2000)
    [20] R. James, S. M. Woodley, C. M. Dyer and V. F. Humphrey, “Sonic bands, bandgaps, and defect states in layered structures- Theory and experiment,” J. Acoust. Soc. Am. Vol. 97, No. 4, pp. 2041-2047 (1995)
    [21] C. Goffaux and J. P. Vigneron, “Theoretical study of a tunable phononic band gap system,” Phys. Rev. B Vol. 64, No. 7, 075118 (2001)
    [22] W. Kuang, Z. Hou, and Y. Liu, “The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals,” Phys. Lett. A Vol. 332, No. 5-6, pp. 481-490 (2004)
    [23] J. O. Vasseur, P. A. Deymier, A. Khelif, B. Djafrari-Rouhani, A. Akjouj, L. Dobrzynski, N. Fettouhi, and J. Zemmouri, “Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range: A theoretical and experimental study,” Phys. Rev. E Vol.65, No. 5, 056608 (2002)
    [24] A. Khelif, P. A. Deymier, B. Djafari-Rouhani, J. O. Vasseur, and L. Dobrzynski, “Two-dimensional phononic crystal with tunable narrow pass band: Application to a waveguide with selective frequency,” J. Appl. Phys. Vol. 94, No.3, pp. 1308-1311 (2003)
    [25] Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, and P. A. Deymier, “Tunable filtering and demultiplexing in phononic crystals with hollow cylinders,” Phys. Rev. E Vol. 69, No.4, 046608 (2004)
    [26] M. Kafesaki, M. M. Sigalas and E. N. Economou, “Elastic wave band gaps in 3-D periodic polymer matrix composites,” Solid State Commun. Vol. 96, No. 5 pp. 285-289 (1995)
    [27] M. S. Kushwaha, and B. Djafari-Rouhani, “Complete acoustic stop bands for cubic arrays of spherical liquid balloons,” J. Appl. Phys. Vol. 80, No. 6, pp. 3191-3195 (1996)
    [28] M. S. Kushwaha, B. Djafari-Rouhani, and L. Dobrzynski, “Sound isolation from cubic arrays of air bubbles in water,” Phys. Lett. A Vol. 248, No. 2-4, pp. 252-256 (1998)
    [29] M. S. Kushwaha, B. Djafari-Rouhani, L. Dobrzynski, and J. O. Vasseur, “Sonic stop-bands for cubic arrays of rigid inclusions in air,” Eur. Phys. J. B Vol. 3, No. 2, pp. 155-161 (1998)
    [30] W. Kuang, Z. Hou, Y. Liu and H. Li, “The band gaps of cubic phononic ceystals with different shapes of scatters,” J. Phys. D: Appl. Phys. Vol. 39, No. 6, pp. 2067-2071 (2006)
    [31] X. Zhang, Z. Liu, Y. Liu, and F. Wu, “Elastic wave band gaps for three-dimensional phononic crystals with two structural units,” Phys. Lett. A Vol. 313, No. 5-6, pp. 455-460 (2003)
    [32] M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites,” J. Acoust. Soc. Am. Vol. 101, No. 3, pp. 1256-1261 (1997)
    [33] M. M. Sigalas, “Defect states of acoustic waves in a two-dimensional lattice of solid cylinders,” J. Appl. Phys. Vol. 84, No. 6, pp. 3026-3030 (1998)
    [34] F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic crystals,” Phys. Lett. A Vol. 292, No. 3, pp.198-202 (2001)
    [35] F. Wu, Z. Liu, and Y. Liu, “Splitting and tuning characteristics of the point defect modes in two-dimensional phononic crystals,” Phys. Rev. E Vol. 69, No. 6, 066609 (2004)
    [36] M. Kafesaki, M. M. Sigalas, and N. Garcia, “Frequency Modulation in the transmittivity of wave guides in elastic-wave band-gap materials,” Phys. Rev. Lett. Vol. 85, No. 19, pp. 4044-4047 (2000)
    [37] M. Kafesaki, M. M. Sigalas, and N. Garcia, “Wave guides in two-dimensional elastic wave band-gap materials,” Physica B Vol. 296, No. 1-3, pp. 190-194 (2001)
    [38] T. Miyashita and C. Inoue, “Numerical investigations of transmission and waveguide properties of sonic crystals by finite-difference time-domain method,” Jpn. J. Appl. Phys. Vol. 40, No. 5B, pp. 3488-3492 (2001)
    [39] T. Miyashita, “Experimental study of a sharp bending wave-guide constructed in a sonic-crystal slab of an array of short aluminum rods in air,” IEEE Ultransonics Symposium, pp. 946-949 (2004)
    [40] T. Miyashita, “Sonic crystals and sonic wave-guides,” Meas. Sci. Technol. Vol. 16, No. 5, pp. R47-R63 (2005)
    [41] X. Zhang, H. Dan, F. Wu, and Z. Liu, “Point defect states in 2D acoustic band gap materials consisting of solid cylinders in viscous liquid,” J. Phys. D: Appl. Phys. Vol. 41, No. 15, pp. 155110 (2008)
    [42] L. Y. Wu, L. W. Chen and C. M. Liu, “Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions,” Phys. Lett. A Vol. 373, No. 12-13, pp. 1189-1195 (2009)
    [43] L. Y. Wu, L. W. Chen and C. M. Liu, “Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal,” Physica B Vol. 404, No. 12-13, pp. 1766-1770 (2009)
    [44] L. Y. Wu, L. W. Chen and C. M. Liu, “Acoustic energy harvesting using resonant cavity of a sonic crystal,” Appl. Phys. Lett. Vol. 95, No. 1, pp. 013506 (2009)
    [45] L. Y. Wu and L. W. Chen, “Wave propagation in a 2D sonic crystal with a Helmholtz resonant defect,” J. Phys. D : Appl. Phys. Vol. 43, No. 5, pp. 055401 (2010)
    [46] J.W.S. Rayleigh, “The Theory of Sound Vol. II,” 1st edition, MacMillan, London, (1878)
    [47] H. Y. Ryu, M. Notomi and Y. H. Lee, “High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities” Appl. Phys. Lett. Vol.83, No. 21, pp. 4294-4296 (2003)
    [48] H. Y. Ryu, M. Notomi, G. H. Kim and Y. H. Lee, “High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity,” Optics Express Vol. 12, No. 8, pp.1708-1719 (2004)
    [49] M. Xing, W. Zheng, Y. Zhang, G. Ren, X. Du, K. Wang, L. Chen, “The whispering gallery mode in photonic crystal ring cavity,” SPIE Vol. 6984, pp. 698438-1-4 (2008)
    [50] K. Nagahara, M. Morifuji , M. Kondow, “Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal,” Science Direct Vol. 9, No.3, pp. 261–268 (2011)
    [51] S. David, A. Chelnokov, J.M. Lourtioz, “Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings,” Optics Lett. Vol. 25, No.14, pp. 1001-1003 (2000)
    [52] Y. Q. Wang, “Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings,” Europhys. Lett. Vol. 74 No. 2 pp. 261-267 (2006)
    [53] J. Li, Y. S. Wang and C. Zhang, “Finite Element Method for Analysis of Band Structures of Phononic Crystal Slabs with Archimedean-Like Tilings,” IEEE IUS pp.1548-1551 (2009)
    [54] Y. L. Xu, C. Q. Chen and X. G. Tian, “Tunable band structures of 2D multi-atom Archimedean-like phononic crystals,” Int. J. Comp. Mat. Sci. Eng. Vol. 1 No. 2 pp. 1250016 (2012)
    [55] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, “Photonic Crystals-Molding the Flow of Light,” Princeton University Press, New Jersey, p. 6, (1995)
    [56] A.N.Oraevsky, “Whispering-gallery waves,” Quantum Electronics, Vol.32, No.5, pp.377-400 (2002)
    [57] R. Parviainen, “Connectivity Properties of Archimedean and Laves Lattices,” Universitetstryckeriet, Uppsala, Sweden p. 10 (2004)
    [58] COMSOL 3.5a The COMSOL Group, Stockholm, Sweden (2009)
    [59] J. N. Reddy, “An introduction to the finite element method 3rd ed.,” McGraw-Hill, New York (2006)
    [60] P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Vol. 54, No. 11, pp.7837–7842 (1996)
    [61] Y. J. Cao and Y. Z. Li, “Symmetry and coupling efficiency of the defect modes in two-dimensional phononic crystals,” Mod. Phys. Lett. B Vol. 21, No. 22, pp. 1479-1488 (2007)
    [62] M. Torres, F. R. M. de Espinosa, D. García-Pablos, and N. García, “Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects,” Phys. Rev. Lett. Vol.82, No.15 , pp. 3054-3057 (1999)

    無法下載圖示 校內:2019-08-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE