| 研究生: |
楊昆霖 Yang, Kun-Lin |
|---|---|
| 論文名稱: |
27-GHz CMOS 壓控振盪器之研製 Implementation of a 27-GHz Voltage-Controlled Oscillator |
| 指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 低功率 、相位雜訊 、交叉耦合對 、壓控振盪器 |
| 外文關鍵詞: | low power, phase noise, cross-couple pair, voltage-controlled oscillator (VCO) |
| 相關次數: | 點閱:84 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在57~64-GHz毫米波頻段中,目前雖然尚未定義確切的系統規範,但是全世界各家大廠均已經在積極整合相關60-GHz毫米波積體電路。本篇論文主要考量低功率與低相位雜訊之特性,利用較為成熟0.18-um製程技術進行27-GHz壓控振盪器的設計。在未來搭配一個倍頻器的情況下可以提供一個54-GHz的訊號源。
透過國家晶片系統設計中心(CIC)的細心量測之下,測得振盪頻率為26.96~ 27.95-GHz,可調頻率範圍約1-GHz。在供應電壓為1.8V時,消耗功率為3.5mW;輸出功率為-7.88 dBm;在27-GHz量測到的相位雜訊為-99.39 dBc/Hz@1MHz offset和-120.94 dBc/Hz@10MHz offset;FOM指數為-182.56 dBc (@1MHz offset) ~ -184.11 dBc (@10MHz offset)之間;晶片面積大小為0.855*0.679 mm2。
本篇論文實現之晶片在相位雜訊與模擬之間有些許差異,電感以EM模擬後比較量測值相去不遠,預計未來對晶片內之走線、電感與電容進行EM模擬,以達到更精確之模擬結果,並將技術轉移到如90-nm CMOS先進製程之中,期望未來能達到低功率、高效能的整合目標。
Though the system standards for the applications in the V-band of 57 to 64 GHz are still not clear, the main leadership design companies have already put a great effort on the integration of 60-GHz mm-wave front-end circuits. In this thesis, a 27-GHz voltage-controlled oscillator (VCO) with low power and low phase-noise performances are designed in a mature 0.18-um CMOS process. This oscillator can provide a 54-GHz signal in the case with the help of a frequency doubler.
From the measurement results measured by CIC, the output frequency of the VCO ranging from 26.96 to 27.95 GHz (with a tuning range of about 1 GHz). The total power consumption is 3.5 mW from a 1.8V supply voltage. The output power is -7.88 dBm. The measured phase noise at 27 GHz is -99.39 dBc/Hz @ 1MHz offset and -120.94 dBc/Hz@10 MHz offset. The calculated figure-of-merits (FOM) are about in the range of -182.56 dBc (at 1 MHz offset) and -184.11 dBc (at 10 MHz offset). The chip size is about 0.855x0.679 mm2.
It is shown that there are some inconsistences between the measurement and simulation results of phase noise. After EM simulation of inductor, it found the result is similar to measurement. In the future, for the more precise simulation results, the layout of inter connection lines, inductors, and capacitances have to be taken into the design. Simultaneously, we would like to transfer this design from a 0.18um CMOS to a 90nm CMOS process, in order to achieve the lower power and higher performance.
[1] K. Sangsoo, K. Jeong-Geun, S. Taeksang, Y. Euisik, and H. Songcheol, "20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers," in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2004, pp. 269-272.
[2] P.-C. Huang, R.-C. Liu, H.-Y. Chang, C.-S. Lin, M.-F. Lei, H. Wang, C.-Y. Su, and C.-L. Chang, "A 131 GHz push-push VCO in 90-nm CMOS technology," in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2005, pp. 613-616.
[3] 翁敏航, “射頻微機電元件技術與發展”, 電子月刊, 2004 年12 月號, pp. 194-201.
[4] S. S. Mohan, M. del Mar Hershenson, S. P. Boyd, and T. H. Lee, "Simple accurate expressions for planar spiral inductances," IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp. 1419-1424, Oct. 1999.
[5] 蔣宗佑,“低功率低相位雜訊CMOS 互補式LC諧振埠壓控震盪器之研究與分析”, 國立雲林科技大學電子工程研究所碩士論文,民國九十四年七月
[6] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, New York : Cambridge University Press, pp. 47-52, 1998.
[7] H. Ronkainen, H. Kattelus, E. Tarvainen, T. Ruhisaari, M. Andersson, and P. Kuivalainen, "IC compatible planar inductors on silicon," IEE Proceedings of The Circuits, Devices and Systems, vol. 144, no. 1, Feb. 1997, pp. 29-35.
[8] H. J. De Los Santos, "On the ultimate limits of IC inductors-an RF MEMS perspective," in Electronic Components and Technology Conference, 2002. Proceedings. 52nd, 2002, pp. 1027-1031.
[9] W. B. Kuhn and N. M. Ibrahim, "Analysis of current crowding effects in multiturn spiral inductors," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 1, pp. 31-38, Jan. 2001.
[10] B.-L. Ooi, D.-X. Xu, P.-S. Kooi, and F.-J. Lin, "An improved prediction of series resistance in spiral inductor modeling with eddy-current effect," IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 9, pp. 2202-2206, Sept. 2002.
[11] K. Y. Tong and C. Tsui, "A physical analytical model of multilayer on-chip inductors," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1143-1149, Apr. 2005.
[12] 袁杰,高頻通信電路設計-被動網路,全華書局,民國83年
[13] Z. Jun, L. Chang, D. R. Trainor, J. Chen, J. E. Schutt-Aine, and P. L. Chapman, "Development of three-dimensional inductors using plastic deformation magnetic assembly (PDMA)," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1067-1075, Apr. 2003.
[14] 高曜煌,射頻鎖相迴路IC設計,滄海書局 2005
[15] 劉深淵,楊清淵,鎖相迴路,滄海書局 2006.
[16] C. Samori, S. Levantino, and A. L. Lacaita, "Integrated LC oscillators for frequency synthesis in wireless applications," IEEE Communications Magazine, vol. 40, no. 5, pp. 166-171, May. 2002.
[17] 蔡穎傑,“最佳化電壓控制振盪器線路設計之研究”,國立高雄應用科技大學電機工程研究所碩士論文,民國九十六年七月
[18] B. Razavi, RF Microelectronics, Prentice Hall, 1997.
[19] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 1996.
[20] 通訊元件教學推廣中心,微波積體電路設計,教育部顧問室,民國九十六年三月
[21] 柯俊瑋,“低相位雜訊及低功率CMOS壓控振盪器之設計”, 國立中正大學電機工程研究所碩士論文,民國九十八年六月
[22] D. B. Leeson, "A simple model of feedback oscillator noise spectrum," Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, Feb.1966.
[23] A. Hajimiri and T. H. Lee, "A general theory of phase noise in electrical oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[24] A. Hajimiri and T. H. Lee, "Corrections to "A General Theory of Phase Noise in Electrical Oscillators"," IEEE Journal of Solid-State Circuits, vol. 33, no. 6, pp. 928-928, Jun. 1998.
[25] T. H. Lee and A. Hajimiri, "Oscillator phase noise: a tutorial," IEEE Journal of Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[26] C. M. Hung, L. Shi, I. Laguado, and K. K. O, "A 25.9-GHz voltage-controlled oscillator fabricated in a CMOS process," in Symposium on VLSI Circuits, 2000, pp. 100-101.
[27] J. P. Carr and B. M. Frank, "A 38 GHz accumulation MOS differentially tuned VCO design in 0.18-um CMOS," in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2006, pp.170-173
[28] J. O. Plouchart, K. Jonghae, N. Zamdmer, M. Sherony, T. Yue, Y. Meeyoung, M. Talbi, A. Ray, and L. Wagner, "A 31 GHz CML ring VCO with 5.4 ps delay in a 0.12-um SOI CMOS technology," in Proceedings of the 29th European Solid-State Circuits Conference, ESSCIRC '03, 2003, pp. 357-360.
29] C.-H. Chiu, K.-H. Liang, H.-Y. Chang, and Y.-J. Chan, "A low phase noise 26-GHz push-push VCO with a wide tuning range in 0.18-um CMOS technology," in Asia-Pacific Microwave Conference(APMC 2006), 2006, pp. 1128-1131.
[30] K. KaChun, J. R. Long, and J. J. Pekarik, "A 23-to-29GHz Differentially Tuned Varactorless VCO in 0.13um CMOS," in IEEE International Solid-State Circuits Conference(ISSCC 2007), Feb. 2007, pp. 194-596.
[31] C. Changhua and K. K. O, "A 90-GHz voltage-controlled oscillator with a 2.2-GHz tuning range in a 130-nm CMOS technology," in Symposium on VLSI Circuits, 2005, pp. 242-243.
[32] A. Hajimiri and T. H. Lee, "Design issues in CMOS differential LC oscillators," IEEE Journal of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May. 1999
[33] J. Yang, C. Y. Kim, D. W. Kim, and S. Hong, “Design of a 24-GHz CMOS VCO with an asymmetric-width transformer,” IEEE Trans. Circuit Syst. II, vol. 57, no. 3, pp. 173–177, Mar. 2010.
[34] W. Liang, A. Ng, L. Leung, and H. C. Luong, " A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13μm CMOS process," in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), May. 2010, pp. 145-148